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A dynamic system of the three resonantly coupled waves, two of which are parametrically excited, is 
investigated. It is shown that when the pump amplitude is increased in this system, a strange attractor 
(analogous to the known Lorentz attractor) is produced and corresponds to stochastic self-oscillations of 
the wave amplitudes, yet the phases are always fully correlated. A concrete realization of this process in a 
magnetoactive nonisothermal plasma is considered. 

PACS numbers: 52.35.P~ 

1. INTRODUCTION 

It is known that one of the mechanisms widely used to 
limit the intensity of parametrically amplified waves is 
the transfer of energy from them to waves that a r e  
damped in  the linear approximation and a r e  produced a s  
a result of decay instability. In the simplest formula- 
tion, an investigation of this mechanism leads to the 
problem of the interaction of three resonantly coupled 
waves; this differs from the classical problem in that 
besides the linear damping, two of these waves possess 
a parametric growth rate. The starting point in this 
case is the following system of equations for the com- 
plex wave amplitudes: 

cir=a,as'-vra2+ha,', i,==a,a:'-aa, 

where h is proportional to the pump amplitude. 

wave turbulence in various media, particularly in a 
plasma. C2-51 

We derive below, with waves in a plasma as an ex- 
ample, equations of type (I), and then investigate anal- 
ytically and qualitatively the solutions of this system. 
We show that the SA observed in the system (1) is simi- 
lar to the Lorenz attractor known from hydrodynam- 
ics. C 6.71 

2. DERIVATION OF THE BASIC EQUATIONS 

By way of a concrete example we consider the para- 
metric interaction, in a nonisothermal magnetoactive 
plasma, of a whistler with ion sound and with plasma 

We show in this paper, on the basis of an investigation 
of the solution of the dynamic system, that a stochastic 
stabilization regime is possible besides the trivial re- 
gime of static stabilization of the parametric instability. 
In such a regime the amplitudes of the interacting waves, 
while limited, pulsate randomly with time. In the 
phase space of the system (I) ,  these stochastic motions 
correspond to trajectories that correspond to the so- 
called strange attractor. ['] The strange attractor (SA) 
is an attracting region in phase space, in which the be- 
havior of the trajectories is extremely complicated and 
is characterized a s  a rule by mixing and by a continuous 
spectrum. 

oscillations near the lower hybrid resonance. An inter- 
action of this type has attracted much attention recently 
in connection with the aroblem of RF heatim of a olas- ., 
mac8191 and parametric phenomena in the ionosphere. [1°1 

Assume that a whistler with wave vector q and frequen- 
CY 

0 ,=0 ,c~o , -~q*  cos (q-2) 

propagates along a magnetic field H in a plasma. This 
wave can excite parametrically a plasma wave k with 
frequency 

and ion sound x with frequency 9, =c,x . C1O1 Here w* 
= ( 4 ~ e ~ n , , m - ~  ) ' I2 ,  zllH, wH =e~(mc)-' , and the ion sound 
is assumed to be unmagnetized. The synchronism con- 
ditions a r e  standard: 

The mathematical discovery of SA and their observa- q=k+x, o , = o r f  Q.. 
tion in a number of dynamic systems describing real 
hydrodynamic experiments have led to new concepts con- 

Owing to the large group velocity of i t s  propagation, cerning the nature of turbulence. According to these 
concepts, the onset in a nonequilibrium dissipative me- 

the whistler velocity can be regarded a s  constant. 
Thus, a plasma wave a t  the frequency of the lower hy- 

dium of disordered motions characterized by a continu- brid resonance as well a s  ion sound a re  parametrically 
ous spectrum need not necessarily be due to excitation excited in the given pump field. The confinement of the , of an unusually large number of degrees of freedom of instability is due to energy transfer to waves that a r e  
the medium. Until recently, the SA, a s  well a s  the con- not a t  resonance with the pump. It is necessary to take 
cept of the few-mode turbulence, was associated only into account f irst  a plasma wave which is synchronous 
with systems of the hydrodynamic type. However, the to the produced pair: 
results of recent papers devoted to the analysis of wave- - - 
interaction process in nonconservative media allow us to 
state that SA have a direct bearing also on the nature of k,=k-x, or,=ox-Qx. 
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It is precisely this triplet of resonantly coupled waves 
which will be of interest to us hereafter. Of course, 
under real conditions this triad will not remain isolated; 
moreover, since i t  is necessary to satisfy sirnultaneous- 
ly the conditions (2) and (3), we shall not find a suitable 
wave (Itl, w,,) for  any arbitrary growing pair. The pro- 
cess considered here, however, is the most elementary 
one and is the refore certainly worthy of attention. 

Assuming spatial homogeneity, the equations for the 
amplitudes of interacting waves that vary slowly in time 
a re  obtained in standard fashion from the hydrodynamic 
equations for  the RF oscillations of an electron gas and 
from the kinetic equations with allowance for the RF po- 
tential (Miller force) for ion sound. c11"2' The resultant 
equations take the simplest form if we change from the 
natural variables-the Fourier components of the varia- 
tions of the electron densities n, and n,-to the normal 
amplitudesr1s~14 

We then obtain 

d k f  ykat=-il'kr,,a~,b,-i).V~LaEYbbb, 

6.+y.b.=-iV;,&tar,'-iWkxqE,ar', (5) 

~ ~ , + ~ ~ , a k , = - i ~ ; k , . a k b . ' .  

Here E, is the complex amplitude of the electric field of 
the whistler, y, and y, a r e  the damping decrements, for 
which complete equations a r e  given in the book of 
Ginzburg and ~ukhadze"~'; 

(it was assumed in these formulas that w,= w,, w w,). 

The substitutions 

ar-rr,( 1 Vkk, . I ) - ' ( i - i )  .2-" exp[O.S(arg Wk.,+argE,) l a , .  

b.-y,,(I 17kk,.I)-'(1-i) .2-": exp[0.5i(arg Wk.,+argEq) ]at, 

ak,--yt,(l Vkt,.()-'i exp (-iarg Vrr,.)~,, t=ryt,-' 

change the system (5) to the dimensionless form (I) ,  
where h=l W,,E,I yq-' is proportional to the pump, and 
v1 =y,y,, -' and v2 =y,y,,-l a re  the normalized decre- 
ments. Our task is in fact the investigation of the sys- 
tem (1). 

3. ANALYTIC INVESTIGATION OF THE SYSTEM ( I ) .  
PHASE CORRELATION 

A remarkable feature of the sixth-order system (1) is 
that it reduces to a third-orden system. We demon- 
strate this by putting 

It follows from (1) that 

i.e., the projections of the system trajectories on the 
(5 ,?) plane enter into the angle Y between the straight 
lines 5 +? = 0  and (vl +v2)5 +(1 +v, + v 2 h  =O. 

I t  is likewise easy to deduce from (1) that 

In the region of Y, however, w~ have 5 > 0 if 5 + g ?O 
and {<Oif  [ + g c O ;  therefore&>Oif  s in$<Oand$cOif  
sin?4 > 0. It follows therefore that $ - 0, and consequent- 
ly also 5-0 and 7-0.  

This means complete correlation of the phases: they 
have taken on values suchthat the processes of parametric 
excitation and decay interaction have maximum intensity. 
We call attention to the fact that, in contrast to param- 
eteric excitation of waves in media with a non-decay 
spectrum, where phase correlation takes place only for  
the pair due to in the present case the 
phase of the wave as,  which is not connected directly 
with the pump, also correlates. 

The system (1) is invariant to the substitutions 

corresponding to the remaining leeway in the choice of 
the phase. We can therefore assume all  the ai to be 
real. Then, putting x = n i ,  y =a2, and z=a,, we get 

This third-order system is very similar to the popular 
Lorenz system that appears in the investigation of ther- 
mal convectionc6' and laser  dynamics[4'51: 

The system (7) is apparently the first  attonomous sys- 
tem of ordinary differential equations, in which the SA 
was observed. It has attracted much attention on the 
part of the mathematicians and has by now been investi- 
gated in considerable detail. c'7-22' We investigate be- 
low the system (6) by analogous methods. 

All that can be established analytically a r e  certain 
general properties of the system, a s  well as the local 
structure near the equilibrium states (ES). 

The following three important properties of the sys- 
tem (6) a r e  analogous to the properties of the system 
(7): 

1. The system (6) is invacant to the substitutions 
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2. The phase volume shrinks uniformly: 

so  that the attractor should have a zero  Lebesgue mea- 
sure. 

3. The confinement of the parametric instability with- 
in the framework of (6) takes place arbitrary supercri- 
ticality. In fact, let us  put 

then 

i.e. , all  the trajectories a r e  contained in the ellipsoid 
u s  9h2k-l. 

We consider now the ES, and pay attention to their 
evolution with increasing pump h. At h < ( U ~ U ~ ) ' / ~  there 
is a single equilibrium state 0(0 ,0 ,0)  to which a l l  the 
trajectories a r e  attracted. At k >(u,v,)"~ the threshold 
of parametric excitation i s  exceeded and two nonzero 
ES appear: ~ * ( i ( z ~ 1 ) ' ~ ~ , ~ ( ~ ~ 1 ) ' ~ ~ , ~ ~ ) ,  where z0=(h2 -vl 
U , ) ~ / ~ , Z  =(h - z0)v;l, and correspond to the static reg- 
ime of instability elimination. The zero-point ES then 
becomes unstable. 

We call attention to the high effectiveness of the con- 
finement of the instability within the considered triplet. 
Thus, the dispersion relations admit of the decay of the 
plasmon (k, w,) into a pair of waves not connected with 
the 

but for this purpose it is necessary to exceed the plas- 
mon threshold amplitude, which can be estimated in di- 
mensionless variables a t  v:/~. But at any h we have 
lzO < vz, so that the ES C*  a r e  stable to excitation of an 
"extraneous" pair. We note that this conclusion can be 
arrived a t  only for the static confinement regime; in the 
stochastic regime the question remains open. 

At v, < v, + 1 the ES C* a re  always stable. This is 
precisely the case in decay (with participation of ion 
sound) confinement of Langmuir waves excited by an el-  
ectromagnetic wave in an isotropic plasma.L231 In this 
stiuation x and y a r e  plasmons parametrically connected 
with the pump and having close frequencies, therefore 
v2= V'. 

In the case considered by us, that of wave interaction 
in a magnetoactive plasma, the plasmons x and z a r e  
practically equally damped: vi - 1, and the condition 
v, < vl + 1 = 2 may be violated a t  sufficiently large damp- 
ing y of the ion sound. Then the ES C* becomes unstable 

We note that in a collisionless plasma the plasma- 
wave damping decrements can be quite small ,  and then 
v, >> vi. In this case ho = 0.5 v2, and in terms of the ini- 
t ial  variables I E ~ I  > y (2 1 W,,, )-', i. e. , the pump 
wave amplitude a t  which the ES C* become unstable does 
not depend on the plasmon damping decrement. 

Thus, a t  sufficiently large supercriticalities, all the 
ES of the system (6) a re  unstable. They have the follow- 
ing structures: 

ES 0-saddle-node with two-dimensional stable sep- 
aratriv (corresponding to two negative eigenvalues) and 
two one-dimensional unstable ones (positive eigenvalue). 

ES Ci--saddle-foci. The trajectories approach them 
along one-dimensional separatrices and move away un- 
winding along two-dimensional separatrices (correspon- 
ding to complex-conjugate eigenvalues with positive real  
parts). 

4. NUMERICAL INVESTIGATION OF THE SYSTEM (6) 

A numerical investigation of the system (6) has shown 
complicated and entangled trajectories exist in it a t  h 
>hO. A typical realization appears outwardly a s  follows: 
the generating point in phase space makes several  rev- 
olutions around the ES C', then goes over to C - and ro- 
tates around it, returns back to c+, etc. (see Fig. 1). 

It is convenient to carry out the investigation with the 
dimensionality of the phase space decreased. This is 
done, f irst ,  by constructing a two-dimensional mapping 
of the sequence and, second, by using the construction 
of the inverse limit to reduce it to a one-dimensional 
mapping (this was done by for the Lorenz 
system). 

For  the secant plane we take the two-dimensional se t  
C-that part of the plane z =zO on which H < 0. The map- 
ping of the sequence *: C - C, which se ts  the initial 
point U,EC in correspondence with the point ( T ~ + ~ E C ,  at 
which the trajectory that begins a t  U, returns to C fo r  
the first  time, was constructed a t  v, = 1, v, = 4, and h 

I/ 

FIG. 1. Result of an analog simulation of the system (6) at 
vi=l ,  v,=4, and h = 6 . 7 5 .  
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FIG. 2. Mapping of the sequence for the system (6) .  

= 5.875 (Fig. 2). 

The principle role in the organization of the stochast- 
icity is played by the ES 0, whose two-dimensional sta-  
ble separatrix r 8 ( 0 )  crosses T; along the line A .  The 
mapping of 9 i s  discontinuous: points lying on opposite 
sides of A go off along different separatrices r;,,(O). 
The operation \E i s  a combination of stretching in the p 
direction with compression in the 9 direction (the com- 
pression is undervalued in the figure for the sake of 
clarity). 

If we consider the action of \E along q ,  then we obtain 
a one-dimensional mapping for which 9 i s  the inverse 
limit. ~21,221 It will be convenient, following  anf ford,"^] 
to identify the points that a r e  symmetrical with respect 
to rotation about the z axis; we then obtain a continuous 
mapping of the segment into itself cp - @((p). It is shown 
on Fig. 3d. The points a ,  b, and c correspond to the 
line A ,  to the points B=\E(A), and to C*. 

It is well knowncz4' that similar stretching mappings1' 
have a stochastic behavior, in particular, mixing prop- 
erties. The mixing for the \E mapping was proved by 
Bunimovich and Sinai.[13' The SA structure in the sys- 
tem (6) is analogous to the SA of the Lorenz system (7). 
A numerical analysis has shown that the SA of the sys- 
tem (6) belongs to the single-parameter family of at- 
tractors described by Guckenheimer and Williams. cz0-221  

The structure of these SA is topologically quite compli- 
cated and is sensitive to the parameters of the system 
(non-coarseness). 

We now trace the formation of the SA with increasing 
h ,  a t  fixed v , = l a n d  v2=4. At 2 c h < 4 . 0 ,  Q, takes the  
form shown in Fig. 3a. The separatrix ry(0) goes to 
C': b < a .  At the point h -4.0 bifurcation takes place: 
ry, ,(O)cP(O),  and here b=a .  The form of @ at 4.0 
s h s4.84 i s  shown in Fig. 3b. At the instant of bifurca- 
tion there appears a cycle (point d )  and simultaneously 
the periodic points of the period 3, and this leads to the 
stochasticity. IZ5] But this stochasticity (which consti- 
tutes the vicinity of a homoclinic contour on two sym- 
metrical cycles) is not attracting, since almost al l  the 
points from the region d c cp c b a r e  attracted to c. 

At h - 4.84 we have d = @(b) and the points cease to go 
over to c from the region d < < b , that is to say, at 
4.84 s h c h0 - 4.92 the system has two attractors, two 
simple and one strange, and the region of their attrac- 

FIG. 3. One-dimensional mappings of the sequence at v, = 1 
and v 2 = 4 :  a) h=3.5 ,  b) h = 4 . 5 ,  c) h=4.875 ,  d) h=5.875.  

tion is separated by the cycle d (Fig. 3c). At h =ho the 
ES C* become unstable (d sticks to c) and only the SA 
remains. Thus, the onset of stochasticity takes place 
in hard fashion and i s  accompanied by hysteresis. 
At h = 13.4 stable limit cycles appear in the system (6). The 
obtained stochastic-regime cri teria corresponding to the 
appearance of the SA can apparently be realized in ex- 
periment without difficulty. In fact the transition to the 
SA in the example considered above (v, = 1 and v, = 4) 
takes place when the instability threshold is exceeded by 
a factor 2.5 (hO = 5). Such values of the pump-wave 
amplitude a r e  now readily attainable both in a laboratory 
plasma and in the ionosphere. In particular, as shown 
in,c1o1 the conditions for parametric instability of a 
whistler in the ionosphere can be realized in the opera- 
tion of radio stations in the ultralong-wave band. Since 
the properties of the ionosphere vary withheight, differ- 
ent parametric-instability regimes will take place at the 
corresponding heights. 

5. CONCLUSION 

The model considered above for the confinement of 
parametric instability presupposes the existence of a 
wave that is in synchronism with the pair excited by the 
pump. This i s  a rather frequent situation and can be  
encountered, besides in the case considered here, when 
waves a re  excited in a magnetoactive plasma near the 
upper hybrid resonance, a s  well a s  in an isotropic non- 
isothermal plasma. In this case Eqs. (1) describe the 
mechanism that is the most effective, in our opinion, 
for instability confinement and leads to the onset of 
stochasticity even in a system of three interacting 
waves. We point out also that stochastization of the am- 
plitudes occurs in the case of complete phase correla- 
tion, i .e. ,  the situation here is to some degree the con- 
verse of the frequently employed random-phase approx- 
imation. 

The authors thank Ya. G. ~ ina ' ;  for useful discussions 
and V. I. Dubrovin for help with the analog experiment. 
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l )~l though the mapping of Fig. 3d has sections with Id@/dV I 
< 1 ,  this mapping becomes uniformly stretching if the metric 
is properly chosen. 
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Indirect multispin exchange 
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(Submitted 16 March 1977) 
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If the indirect exchange between f-spins is effected by s-electrons with nonzero total spin, then it is of 
essentially non-Heisenberg character. For the particular case of indirect exchange via a donor electron in 
a magnetic semiconductor it is possible to construct an equivalent magnetic Hamiltonian having the form 
of the square root of an expression bilinear in the f-spins. The Ruderman-Kittel term is a small correction 
to it. The constructed Hamiltonian accounts for the spectrum of the system accurately, but the average 
values of the spin operators can be expressed in terms of its eigenfunctions only in a manner that is, 
generally speaking, different from the manner accepted in quantum mechanics. The Harniltonian contains 
all the spin invariants possible for isotropic systems: multispin, biquadratic, etc. The spin-spin interaction 
is noncentral. With the aid of this Hamiltonian the localized magnons in a ferromagnetic semiconductor 
are investigated. 

PACS numbers: 75.10.Jm, 75.30.Et 

1. INTRODUCTION 

A s  is well known, the isotropic  exchange interaction 
is accurately described by the Heisenberg Hamiltonian 
only in the c a s e  of a sys tem consisting of two spin-$ 
magnetic atoms.  If the spin, S, of these a t o m s  exceeds 
$, the exchange between them is descr ibed  b y  a Hamil- 
tonian that i s  a polynomial of degree  2S i n  the scalar 
product, S,. q, of the spins.['' Even m o r e  complex is 
the situation in the case of a l a r g e  number of a toms,  
when into the exchange Hamiltonian en te r  multi-spin 
t e r m s  of the type S g .  Sf .  . . Sk . h . Although f o r  many 
physical sys tems  the Heisenberg t e r m  i n  the magnetic 
Hamiltonian i s  the dominant t e r m ,  in  ce r ta in  c a s e s  the 
non-Heisenberg t e r m s  are not small .  Of the non- 

Heisenberg Hamiltonians only those that are l inear  com- 
binations of quadrat ic  and biquadratic t e r m s  (i.e., 
Sg Sf and  (Sg . sf)[']; see, f o r  example, Refs. 2-4) 
have been investigated i n  detail .  Hamiltonians with 
four-spin t e r m s ,  (Sg . S f ) &  h ) ,  added t o  the Heisen- 
b e r g  t e r m s  have a l s o  been investigated.[=] 

In the p resen t  paper  w e  sha l l  show that in cer tain 
physical  s y s t e m s  the isotropic  exchange interaction i s  
descr ibed by  a Hamiltonian of a type ent i rely different 
f r o m  the type indicated above." These  are s y s t e m s  
in which the  indirect  exchange between the localized 

f-spins i s  effected by  mobile s -e lec t rons  that are com- 
pletely polar ized with respec t  to  spin. Such a situation 
differs  sharp ly  f r o m  the indirect  exchange i n  s y s t e m s  
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