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In recent years new ideas have appeared about the
nature of turbulence as stochastic autooscillations pos-
sible only in dynamical systems with a small number
degrees of freedom (n = 1.5) (Refs. 1-6). These ideas
stimulated the search for simple models of nonlinear
processes in nonconservative systems (media) which
would display stochastic behavior. Some models of this
type are now known and the simplest of them are described
by third-order equations. It was shown fairly convincingly
by means of numerical modeling and qualitative analysis
that these models show stochastic behavior.?® As far as
we know, for any of these models the stochastic behavior -
has not been proved rigorously, even in the asymptotic
sense. In the present work we construct another simple
model which may show stochastic behavior. This model
is an autogenerator similar to the Van der Pol generator
but containing an additional active element.

The system in question with one and a half degrees
of freedom contains a small parameter p at the highest
derivative. When p = 0 the analysis of the autogenerator
dynamics reduces to the analysis of a point mapping of
a segment into itself. From the properties of this map-
ing it follows that in the phase space of the system there
is an attractive region — attractor — where there are no
stable equilibrium states or stable periodic motions.

For the motion in this region of the phase space there
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is a natural invariant probability distribution with respect
to which the dynamical system is ergodic. It can therefore
be verified in this way that for ¢ = 0 this autogenerator
shows stochastic behavior, i.e. It is a true noise gener-
ator.

The diagram of the autogenerator is shown in Fig.
1a. It includes a negative conductance —g and a tunnel
diode whose characteristic is shown in Fig. 1b. In di-
mensionless variables

z=I/I—1,
2=U/U,—1,

y=I"'[ (U,~U)C*L-+1],
T=t(LC)~"

this autogenerator is described by the equations

i=y—0z,
y=——x+2'1y+cu.+f$, 1)
where

s=C'L-"UJI,,  1=05(gL—Cr) (LC)™", p=gUs/L:—1,

u=8C,/C, a=1+p—215,

and f(z) is the idealized characteristic shown in Fig. 1b
by the dashed line. For pu<« 1 all motion of the system
(1) can be separated into fast (along the lines x = const
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FIG. 2. The phase space of the system (1) when there are two symmetric
attractors,

Wy

FIG, 3. The Poincare mapping gener-
ated by the trajectories of the phase
space shown in Fig. 2.

a ¢ 5

and y = const) and slow (in the planes z =—1, x < 1 and
z=1,x >—1). For u — 0 the phase space of the system
(1) therefore degenerates into two half-planes A and B
overlapping in the strip—1 < x < 1, and the crossing
of a point from one half-plane to the other takes place
on the lines x =1 and x =—1. Without any limitation in
generality we can put g = 0, and the system becomes
invariant with respect to the transformation x —— x,
y—TYy,z Tz

The investigation of the motion of the system (1)
reduces to the analysis of the Poincare transformation
of the set S =S¥+S into itself (S is the half-line x=—1,
z==1,y >—0, and S*is the half-line x=1,z =1, y < §).
This transformation is discontinuous since all trajectories
beginning and ending in S can be divided into two groups:
1) Those lying in only one half-plane. For these the Poin-
care transformation is

()
. §=T,S=exp (271%)S;

2) those that cross from one half-plane to the other. For
these

S=T2S, (3)
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FIG, 1. a) Diagram of the generator; b) volt-ampere characteristic of
the tunnel diode and its piecewise linear approximation (dashed line).

FIG. 4. The form of the symmetric singular attractor obtained by analog
modeling of the system (1).

where T, is given parametrically by

S=w-exp (—x1)/sinT,
§=26—w (cos t+x sin T)/sin T, (4)
o=(1-y)"x=y/0,

and S and S in (4) belong to different half-planes (Fig. 2).

The form of the transformation (2)-(4) is clear from
Fig. 3. It is qualitatively different intwo casesc > T;d
and c < Tyd, where d = (T[‘)Zﬁ andc = Tyc [sic]. Thetrajec-
tory of each point is givenby the sequence of transformations

o (Ty) P (T) (T ) P(To) w(T,) (T) . .. . ®)

In the first case all the g;'s are even. This means
that there are two symmetric attractors in the phase
space (Fig. 3). Inside the attractors the trajectories
moveina spiral around one of the unstable foci and after
crossing to the other half-plane they return in the op-
posite direction. In the other case the gj's can be odd,
there is only one attractor, and its trajectories now fall
in the neighborhood of both equilibrium states (Fig. 4).

It follows immediately from (2)-(4) that the derivative
(where it exists) satisfies the inequality |dS/dS|> 1,
from which is follows that this transformation has no
stable periodic points. In addition, this transformation
satisfies the Kosyakin—Sandler theorem.” According
to this thorem, the transformation has aninvariant mea-
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sure with respect to which the transformation will be
ergodic. Consequently, the attractors can be called sin-
gular.1’3 In the phase space of the system (1) therefore
exists an attractive region where there are no stable
equilibrium states or limiting cycles, the motion is er-
godic, and the oscillations which set in will be stochastic.

It is clear that the development of stochastic auto-
oscillations and their properties will depend weakly on the
way in which the nonlinear characteristic of f(z) is ideal-
ized. This was verified by analog modeling of the sys-
tem (1). The results of the computer experiment for
f(z) =2z°—z, p=0,and p = 0.1 are given in Fig. 4. For
5=0.43, a=—0,013,and y = 0.3 we observed a stochas--
tic behavior of type a (two independent attractors contain-
ing the neighborhood of only one equilibrium state), and
for 6 = 0.66 a = 0.33, and y = 0.35 we observed stochastic
pehavior of type b (only one "symmetric" attractor).

Stochastic autooscillations are possible alsoin second-
order dynamical systems if these contain nonlinearities
of the relay type. These systems also have a two-sheet
phase space® and if there are active elements present,
the behavior of these systems can be similar to the be-
havior of system (1).
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We emphasize that the possibility of investigating
the stochastic behavior in a system with a small param-
eter at the highest derivative by mappinga segment into
itself was realized in principle by Rossler,? who, however,
was unable to carry out this program.

The authors are grateful to Academician A. V. Gap-
onov and Ya. G. Sinai for fruitful discussions, andto V. L.
Dubrovin for his help with the computer experiment,
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