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Phase dynamics of coupled oscillators reconstructed from data
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We systematically develop a technique for reconstructing the phase dynamics equations for coupled oscil-
lators from data. For autonomous oscillators and for two interacting oscillators we demonstrate how phase
estimates obtained from general scalar observables can be transformed to genuine phases. This allows us to
obtain an invariant description of the phase dynamics in terms of the genuine, observable-independent phases.
We discuss the importance of this transformation for characterization of strength and directionality of interac-
tion from bivariate data. Moreover, we demonstrate that natural (autonomous) frequencies of oscillators can be
recovered if several observations of coupled systems at different, yet unknown coupling strengths are available.
We illustrate our method by several numerical examples and apply it to a human electrocardiogram and to a

physical experiment with coupled metronomes.
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I. INTRODUCTION

Inferring the laws of interaction between different oscil-
lating objects from observations is an important theoretical
problem with many experimental applications. Identification
and characterization of coupled dynamics from data has been
largely approached within the framework of nonlinear dy-
namics, using techniques developed for bivariate (or, more
generally, multivariate) data analysis [1]. In the present
work, we concentrate on a revealing phase dynamics descrip-
tion of the interaction of oscillatory systems, a highly rel-
evant problem in numerous fields of research: e.g., in the
study of coupled lasers [2], electronic systems [3], chemical
reactions [4,5], cardiorespiratory interaction [6,7], neuronal
systems [8], and functional brain connectivity [9-11], to
mention only a few. The major goal of this paper is to show
that, under certain assumptions about the intrinsic dynamics
and the coupling, it is possible to reconstruct in an
observable-independent, invariant way, the equations of the
phase dynamics from the observed oscillatory data.

Any technique for reconstructing the phase dynamics
equations from data requires as a first step the computation
of phase estimates from the observed scalar signals. This
computation, based, e.g., on the Hilbert transform, complex
wavelet transform, or on the marker event method (see, e.g.,
[12—-14] for details), became a popular tool in the context of
a description of the phase synchronization of chaotic oscilla-
tors and quantification of synchronization in experiments. As
soon as the phases of, say, two interacting oscillators are
obtained, one can estimate phase derivatives (instantaneous
frequencies) and obtain the desired equations, fitting the de-
pendence of each instantaneous frequency on both phase es-
timates [15,16]. Reconstructed in this way, the equations
capture many important properties of the interaction. For ex-
ample, these equations can be used for quantification of di-
rectionality and delay in coupling [6,16—-18], as well as for
recovery of the phase resetting curve [8] (see also later pub-
lications [5,19]). However, this approach has a fundamental
drawback: the phase estimates and reconstructed equations
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depend on the observables used and, generally, differ from
the phases and the equations used in the theoretical treatment
of interacting oscillatory systems. To overcome this problem,
we propose an approach which bridges the gap between
theory and data analysis.

In our approach, we treat the phase estimates, obtained,
e.g., via the Hilbert transform, as preliminary variables. To
emphasize this issue, we hereafter call these variables pro-
tophases. Next, we transform the protophases to obtain the
observable-independent, genuine phases, which correspond
to those used in a theoretical description. In this way, we
obtain an observable-invariant description of the interaction
of coupled oscillators.

We mention two other important features of our approach.
First, as an intermediate result we derive a transformation
from a protophase to the phase for an autonomous oscillator.
This transformation can be used as a preprocessing step for
any technique, dealing with phases, e.g., for quantification of
the phase diffusion. Second, we develop a technique for re-
covery of the autonomous frequencies of systems from ob-
servations of coupled dynamics. This is possible if two or
more observations of the coupled systems for different,
though unknown values of the coupling are available.

In this paper we systematically analyze and further de-
velop the approach suggested in our Rapid Communication
[20]. The paper is organized as follows. Our approach for
reconstructing the phase dynamics is based on the theoretical
framework of coupled self-sustained oscillators [12,21],
which is briefly outlined in Sec. II. Further, we contrast there
the concept of phase used in the theoretical description of
autonomous oscillators with that of an angular variable, or
protophase, estimated from data. Next, we introduce our ap-
proach for the reconstruction of invariant phase dynamics
from arbitrary protophases for one oscillator (Sec. III) and
for bivariate observations (Sec. IV). In Sec. V, numerical
simulation examples are used to validate the efficacy of the
proposed methodology. Furthermore, we verify our theory by
an experiment with two coupled metronomes—a variant of
the classical Huygens study of pendulum clocks (Sec. VI). In
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the end (Sec. VII), we discuss the implications of our analy-
sis for characterization and quantification of interaction from
data.

II. PRELIMINARIES AND GOALS OF THE WORK

A. Theoretical framework: Coupled oscillators
in the phase approximation

Let us recall basic notions of the phase dynamics. Math-
ematically, an autonomous oscillator is described by a vector
of state variables x and a differential equation of motion, x
=F(x). When such a system has a stable limit-cycle solution
X((t)=xo(t+T,), then the motion on the limit cycle and in its
vicinity can be characterized by a phase ¢(x), which grows
linearly with time according to

b= w,, (1)

where wy=27T,' is the natural (autonomous) frequency
[12,21]. A perturbation (say, periodic or noisy) to the pure
autonomous equation leads to a deviation of the phase ¢
from the linear growth (1), resulting in such effects as phase
locking or phase diffusion.

Of particular interest is the description of the interaction
of two oscillators in terms of their phases. As the first step of
the theoretical treatment, one introduces phases ¢, , for two
uncoupled autonomous systems; these phases grow with
natural frequencies w; ,. Next, the coupling terms in the gov-
erning equations should be taken into account. (In a more
complex setting, the coupling may include additional dy-
namical variables requiring additional equations.) Physically,
the coupling appears, e.g., due to an overlap of radiation
fields of two lasers or due to synaptic and/or gap junction
currents between interacting neurons, etc. For the following
it is convenient to distinguish between weak, moderate, and
strong coupling.

If the coupling is weak, the dynamics of the coupled sys-
tem is confined to a torus in the phase space; hence, it can
effectively be described by means of two phases only. This
description can be obtained explicitly with the help of a per-
turbation technique, where one neglects the dynamics of the
amplitudes, because they are robust. The robustness of the
amplitude follows from the fact that the amplitude corre-
sponds to the direction in the phase space, transversal to the
limit cycle, and this direction is stable. Its stability is char-
acterized by the negative Lyapunov exponent \_ of the dy-
namical system. Hence, the amplitude can be considered as
enslaved if the magnitude of forcing or coupling is much less
than |\_|. Contrary to the amplitude, the phase corresponds to
the direction along the limit cycle and, correspondingly, to
the zero Lyapunov exponent. Thus, the phase is a marginally
stable variable and is therefore affected even by a weak ex-
ternal perturbation, which can be due to coupling or due to
noise; see [12,21] for more details. The result of the applica-
tion of the perturbation technique is the following system of
equations:
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b=+ 61(1)(¢1,¢2),

by =0, +qP (. b)), (2)

where ¢? are coupling functions which are 27 periodic
with respect to their arguments. Due to coupling, the aver-
aged velocities of phase rotation,

Q1 =(¢ (M), Qy=(y(1), 3)

called observed frequencies, generally differ from w, . So-
lutions of the system (2) can be quasiperiodic, with incom-
mensurate £}, ,, or periodic. The latter case is designated as
synchronization.

In the case of moderate coupling, the approximation used
in the perturbation theory is not valid anymore, so that Egs.
(2) cannot be explicitly derived from the equations in state
variables. However, the equations in this form still exist. In-
deed, as long as the full dynamics remains confined to the
torus, it still can be described by two phase variables. Fi-
nally, a strong coupling means that the torus is destroyed,
e.g., due to the emergence of chaos and Egs. (2) are not valid
anymore.

Real-world systems are unavoidably noisy. However,
when the noise is weak, it can be accounted for by incorpo-
rating random terms into Egs. (2), so that Egs. (2) become
Langevin-type equations. These equations have been also
suggested for describing the dynamics of weakly coupled
chaotic oscillators [12].

For the rest of the paper we restrict our consideration to
the case of weakly and moderately coupled noisy-chaotic
oscillatory systems in the asynchronous regime—i.e., to the
case when the amplitudes are enslaved and the phase portrait
of the individual system resembles a smeared limit cycle. In
this case, the coupled system can be adequately described by
the phase variables.

B. Phases vs protophases

In the theoretical consideration of a particular periodic
oscillatory system, an analytical expression for the phase
¢(x) obeying Eq. (1) can be found only in exceptional cases.
As the first step, one typically introduces an angle variable
on the cycle, or protophase, 6=6(x,), which grows mono-
tonically within one oscillation period T, and obeys 6(x(t
+Ty))=0(x(t))+27. This can be easily done numerically
once the dynamical equations are known. For example, in
many cases 6 can be identified with an angle 6
=arctan y,/y, in a projection of the limit cycle onto some
plane (y;,y,). Obviously, the choice of the protophase 6 is
not unique: different projections generally yield different
protophases. However, it does not constitute a problem, since
any protophase 6(x,()) can be easily transformed to the
unique phase @(x((7)). Indeed, from

dp dedo

we obtain
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d¢ _ @y _dr
o~ g~ 0450 “

which further reveals the desired transformation
0
dt
= —(6')do'. 5
¢=w, fo d 0( ) (5)

[We impose an additional condition ¢(6=0)=0.]

The crucial issue raised by our study is that the above
discussed distinction between protophases and phases has
never been exploited in the context of data analysis. Indeed,
all known methods of phase estimation from data (see
[12-14] and detailed discussion below)—e.g., via the Hilbert
transform—actually provide protophases which heavily de-
pend on the scalar observables available and on the analysis
technique. If the goal of the analysis is the quantification of
the frequency locking, then the difference between phases
and protophases is not relevant, since they provide the same

average frequencies, (¢)=(6). However, if the goal of the
analysis is to get more insight into the interaction and to
reconstruct the equations of the phase dynamics, this differ-
ence becomes decisive. Indeed, in terms of protophases Eqs.
(2) read

0,=11(6,,6,),

0,=12(6,0,), (6)

where the functions ) depend on the choice of pro-
tophases 6; ,. Equations (6) can be easily reconstructed from
the data (see [16] and Sec. IV A below), but they do not
provide a complete, invariant description of interaction, since
they are observable dependent.

The main goal of our study is to develop a technique for
transformation of protophases to true phases, 6, , — ¢, ,, and
for a subsequent transformation of observable-dependent
functions f? to observable-invariant coupling functions
g™, Next, we propose a solution for the problem of the
determination of autonomous frequencies w, , from observa-
tions of coupled systems. Note that the latter task is highly
nontrivial: the functions f{"-? can be represented as a Fourier
series, but their constant terms do not equal w;,. Before
addressing the problem of two coupled oscillators, we first
discuss how the transformation (5) can be extended to treat
the case of a noisy or a weakly chaotic autonomous oscilla-
tor.

III. ONE OSCILLATOR: FROM TIME SERIES TO PHASE

In this section we describe our approach for recovering
the phase of an autonomous oscillator from a single oscillat-
ing scalar observable. This case, being interesting by itself, is
a necessary first step for the subsequent consideration of
multivariate data.

A. From time series to protophase

The first step of data analysis is to obtain a protophase
O(z) from an oscillatory scalar time series Y(z); the latter is
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assumed to be generated by a noisy or a weakly chaotic
self-sustained oscillator. (In the following we denote the time
series of corresponding observables by capital letters.) Note
that observable y(z) is generally a nonlinear function of state
variables x; we require it to be nondegenerate.

There are different ways to accomplish this task. The most
popular approach is to construct the analytic signal s(z)

=Y(1)+i¥(t), where Y(¢) is the Hilbert transform of Y(z) [22];
see also [12] for details of practical implementation. For an
oscillatory signal Y(z), the Hilbert transform provides a two-
dimensional embedding of the (smeared) limit cycle or
strange attractor. A protophase ® can be computed by taking
the argument of s(z),

P(0) - ?0> .

(1) = arctan( Y()— Y,

and then unwrapping it so that it is defined on a real line.

Here (Y, IA/O) is an offset point, chosen in such a way that it
is evolved by the trajectory. Alternatively, one can exploit the
complex wavelet transform [13,14], which is equivalent to a
subsequent application of a bandpass filter and the Hilbert
transform [31]. Obviously, the protophase obtained accord-
ing to (7) depends not only on the observable Y, but also on

the offset (Y, ¥y).

As already mentioned, to obtain the phase ¢ by means of
a transformation #— ¢ we need a protophase that grows
monotonically within one oscillatory cycle. However, if the
protophase is chosen according to Eq. (7), monotonicity is
not ensured. For example, 6 is not monotonic if the trajectory
in the embedding (y,y) intersects itself [cf. Figs 1(a) and
1(d) below]. However, in this case, we can define a mono-
tonic protophase in a following way. First, we choose a
Poincaré surface of section and denote the moments of time
when the trajectory intersects this surface as f;. Next, we
compute the length L(r) along the trajectory, starting from
the first intersection. The protophase is then defined as

L(r) — L(1;)

o) = ZWL(IM) - L(t;) ’

27Ti, ti<t<li+l' (8)

This definition can be considered as a generalization of the
marker event method [12]. Note that using the marker event
protophase—i.e., linearly interpolating phase between two
intersections with the Poincaré surface of section—we lose
the information about the fast (of the order of the oscillation
period) component of the phase dynamics and retain only
information about the slow variation of the phases. Hence,
although this technique is useful, e.g., for the computation of
observed frequencies, is of a limited use if a complete recon-
struction of the phase dynamics is required. This issue, as
well as a determination of protophases from observables of
different complexity, will be discussed elsewhere [23].

Note that in the following we alternatively, depending on
the context, use both wrapped (defined on 0,27 interval) and
unwrapped (defined on the real line) phases and protophases.
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FIG. 1. (Color online) Embedding of data from the van der Pol
oscillator [Eq. (17)] in coordinates ¥; and ¥;, where ¥; is the Hilbert
transform of Y;, for four different observables (see text). In (a), (b),
and (c) the protophases have been obtained according to Eq. (7), as
corresponding angles. In (d) the protophase has been obtained via
the length of the trajectory according to Eq. (8). The bold red line in
(d) marks the Poincaré section used for this computation.

B. From protophase to phase

Once a monotonic protophase 6(¢) has been obtained from
a time series, we can look for a transformation 6(r) — ().
For a noise-free limit-cycle oscillator this transformation is
given by Eq. (5). Our next goal is to extend this transforma-
tion to the case of a noisy system. The sought transformation
shall satisfy two requirements: (i) it should be 27 periodic in
0 and (ii) it should minimize the deviations of ¢ from the
linear growth—i.e., provide a maximally uniform instanta-

neous frequency ¢.

In the presence of weak noise and/or chaos, the state tra-
jectory does not repeat itself. However, for small perturba-
tions, the trajectory of the stable oscillator is expected to
remain close to the unperturbed one. In this case, the trans-
formation 6— ¢ can be performed on average, requiring a
sufficiently long observation of the oscillatory time series.
Given an estimated protophase O(f) over a time interval 7,
the oscillation frequency can be computed from

_0(1)-0(0)

[O%) T

To find the desired transformation, we average the right-hand
side (rhs) of (4) and write

b _ o (Lp) -
dﬁ_w0<d0(0)>9_0(0)’ )

where, in {---), the average is taken over all the oscillation
cycles. Alternatively, due to ergodicity, the average over 6
can be replaced by time integration over the trajectory:
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1 T
(D=1 fo (- ) (10)

The function (27)~'o(6) is nothing else but the probability
distribution density of 6, as it is inversely proportional to the
velocity of the point on the trajectory. The probability den-
sity can be written as

2m)~'a(6) =(80(1) - 9)), (11)

where the average is taken in the sense of Eq. (10).
Let us represent o(6) as a Fourier series

a(0) =2 S, (12)
with the coefficients

1 [ )
S, =— f a(0)e ™Mb 0. (13)
27T 0

The term Sy=1 ensures the normalization condition for the
probability density. Substituting (11) into (13), we obtain

1 T 2 . 1 T )
S,== f dt f do e m05(0(1) - 0) = — f e 00y,
r 0 0 T 0

(14)

For a time series given as N, points O(¢;) sampled with time
step T/N,, where 1;=jTN,", we replace the integration by
summation and obtain

13
Su=y 2. (15)

rj=1

Finally, using Egs. (9) and (12), we obtain the desired trans-
formation in the form

0 0
in6' S, .
¢=f a(0')do' =2 S”J e q0' = 0+ E ._(ema_ 1.
0 n 0 nt0 1
(16)

Equations (14)—(16) solve the problem of finding the trans-
formation from a protophase to the phase. Transformation
(16) gives the perfectly linearly growing phase for periodic
noiseless oscillations. For a time series with noise it gives the
best possible approximation to the linearly growing phase,
where all nonuniformities, 27 periodic in the protophase, are
eliminated and deviations of ¢(r) from a strictly linear
growth account only for external influences or fluctuations of
the parameters of the underlying dynamical system.

C. Numerical example

We illustrate our theoretical consideration by simulation
of a noisy van der Pol oscillator described by

i— u(1 =x2)% + 0*x=0.05&(r), (17)

where ©u=0.5, w=1.11, and &(r) denotes S-correlated Gauss-
ian noise. We solve the system numerically using the Euler
method and estimate the protophase using four different ob-
servables.
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FIG. 2. (Color online) Deviation of the angle variables ©; (a)
and phases ®; (b) from linear growth for four different observables
of the van der Pol system (see text) are shown by solid black line,
red bold line, dashed blue line, and dotted magenta line, respec-
tively (the lines are vertically shifted for clarity of presentation). It
is clearly seen that the transformation #— ¢ makes the growth of
the corresponding variable almost uniform. Note that the bold red
and solid black lines in (b) practically coincide; it means that our
transformation #— ¢ completely removes the effect of the linear
shift of the reference point for the angle calculations [cf. Figs 1(a)
and 1(b)].

(i) The first observable is just the solution of Eq. (17)—
i.e., Y (r)=x(r)—and the first protophase ©, is computed ac-
cording to Eq. (7) with Y,=Y,=0.

(ii) The second protophase ©, is obtained from Y,(¢)
=x() with Y,=0, ¥,=0.8.

(iii) The third observable is obtained via a monotonic non-
linear transformation of x(f): Ys(r)=exp[x()]-2.2; Yo=Y,
=0.

(iv) Finally, the fourth observable is obtained via a non-
monotonic transformation: Y,(r)=[x*()—1.7]x(1); Y, 0=f/ 0=0.

The phase portraits of the system in coordinates Y;, IA/i are
shown in Fig. 1. Obviously, in cases (i), (ii), and (iii) [Figs.
1(a)-1(c)], rotation of the phase point is monotonic, so that
we can estimate protophases O ,;() according to Eq. (7).
For estimation of ®,(r) [Fig. 1(d)] we employed the ap-
proach based on the length of the trajectory [Eq. (8)]; the
Poincaré section used for this procedure is shown by the bold
red line in Fig. 1(d). The deviations of the obtained phase
estimates ©,, i=1,...,4 from the linear growth wyt are
shown in Fig. 2(a).

Next, we compute from these estimates the phases ®;,
according to Egs. (15) and (16) using 48 Fourier terms in
expansion (16); the results are shown in Fig. 2(b). One can
see that for all observables the deviation from a linear growth
is drastically reduced by the transformation §— ¢. However,
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FIG. 3. (Color online) The phase diffusion in the noisy van der
Pol oscillator (17) is preserved by the transformation (16), as illus-
trated by the protophase ®; and phase ®;, obtained from the first
observable (see text). The curve for the phase is shifted up for
presentation purposes.

as we illustrate in Fig. 3, our transformation preserves long-
time-scale features of the phase dynamics: e.g., the phase
diffusion. Moreover, we stress that the transformation (16) is
fully invertible and does not mean any “filtering” of the data.
Another way to illustrate the effect of the transformation is to
compare the distributions of wrapped protophases and corre-
spondent phases (Fig. 4). Summarizing this example, we
conclude that our method efficiently works with simulated
data of the noisy self-sustained oscillator considered here.

D. Experimental data: Three ECG lead measurements

For the second example we estimate the protophases ©®
and phases @ from three-channel electrocardiogram (ECG)
measurements from a healthy male. The data are taken from
the PhysioNet database [24] (subject mgh0OOl of database
MGH/MF). Hence, we have at our disposal three different
observations of the same oscillatory system. The sampling
frequency used by the recording system was 1 kHz. The
Hilbert plane representations of these channels are presented
in Fig. 5. It can be seen that a monotonic protophase cannot
be obtained according to Eq. (7) due to the fact that the
trajectories are folded and display small loops, smeared by

0.04
0.03
0.02
0.01
0O n 21 0 T 21 0 T 2n 0 T 2n

©1,0; O, ®y O3, 03 Oy, Py

FIG. 4. (Color online) The probability density of protophases
®;(mod 27) (bold curves) and of the phases ®;(mod 2) (solid
regions), obtained from different observables of the van der Pol
oscillator. While the distributions of the phase estimates ©,(r) are
not uniform and depend on the observables, the transformed, genu-
ine phases of all observables are practically uniformly distributed.
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FIG. 5. Three channels of a multiple-lead ECG measurement,

represented in Y;, f/,- coordinates, where f/,- is the Hilbert transform
of Y,

noise. Hence, we estimate the angular variables with the help
of Eq. (8).

The protophases and the phases obtained with the help of
transformation (16) for all channels are shown in Figs. 6(a)
and 6(b), respectively [200 Fourier terms have been used in
the transformation (15) and (16)]. Noteworthy, the phases
@, ,5(r) computed from three different observables nearly
coincide and exhibit a similar slow deviation from a linear
growth. These deviations can be attributed to external pertur-
bations to the cardiovascular system, most likely due to
respiratory-related influences. Figure 7 illustrates the effect
of the transformation ®;—®; on the distributions of
0,(mod 27) and ®,(mod 27). As expected, the distributions
of the phases @ are nearly uniform.

Figure 6(c) shows the evolution of the phase during a
longer time interval. Here the deviations from a uniform
growth become apparent, and one recognizes two character-
istic time scales of these deviations: (i) a shorter time scale,

O, — wot

CI)Z‘ - th

q)l - u}ot
=

-10 \ \ \ \ \

0 20 40 60 80 100
time [s]

FIG. 6. (Color online) Protophases (a) ®; and phases (b) ®; of
three ECG channels. (The curves are vertically shifted for presen-
tation purposes.) Panel (c) shows ®; on a large time scale. One can
see that our transformation preserves all the low-frequency features,
including the phase diffusion. In particular, one can see a regular
modulation of the cardiac phase with period =4 s, which is most
likely due to influence of respiration.
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FIG. 7. (Color online) The distributions of phase estimates
®;(mod 2m) (bold lines) and of the phases ®;,(mod 2) (solid re-
gions), obtained from three ECG channels.

of about =4 s, corresponding presumably to respiratory in-
fluences, and (ii) slower variations with time scale =1 min.
Hence, cleaning away inhomogeneities at the time scale of
one oscillatory period (=1 s), the transformation to the
phase preserves the manifestation of external perturbations to
the heart rhythm, thus providing an opportunity for an effi-
cient analysis of these perturbations. Important is that the
resulting time series of the phase is practically independent
of the observable used (i.e., of the ECG channel).

At the end of this discussion we would like to mention
that using the phases obtained from different channels with
uncorrelated measurement noise one can reduce this noise by
averaging over observables; all noisy components which are
common for different measurements remain, of course, pre-
served.

IV. FROM BIVARIATE TIME SERIES TO PHASE
DYNAMICS EQUATIONS

In this section we describe how the phases ¢ ,, as well as
the equations for their dynamics, Egs. (2), can be recon-
structed from the observations of two scalar observables y; ,.
A generalization of our approach to the case of a larger num-
ber of interacting oscillators will be discussed elsewhere
[23]. The first step—obtaining the protophases @ ,(z) from
the time series Y ,(rf)—was described in Sec. IIl A above;
thus, now we presume that time series of protophases
0,(1), O,(t), 0=t=T, are already available.

A. From time series to equations for protophases

We assume that the protophases stem from coupled oscil-
lators satisfying Eq. (6), and we try to reconstruct these equa-
tions. The first observation is that this is possible only in the
nonsynchronous case when the oscillations are quasiperiodic
or nearly quasiperiodic (as we presume that the data are
noisy, the exact notion of quasiperiodicity does not apply).
Indeed, in the case of synchrony (for simplicity we can con-
sider 1:1 locking) one observes a periodic motion with a
certain relation between the phases; i.e., the observables O ,
are functionally related. Therefore it is impossible to recon-
struct functions of two variables in (6), because these func-
tions are observed not on the full torus 0=0, , <2, but
only on a line. On the other hand, in the absence of syn-
chrony, when the observed regime is nonperiodic, there is no
relation between the observed protophases ®; , and one may
hope to reconstruct the functions of two variables in (6). It is
clear, that this reconstruction will work better if the angles
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nearly uniformly cover the torus 0=0, , <2

The next step is the estimation of the rhs of (6). For sim-
plicity of presentation we consider only the first equation to
be reconstructed:

0,(6,,0,) = fV(6,,0,) = X F\l) emtrimy —(18)

n,m

We find the coupling function by minimizing the error of
approximation in (18) according to

27 (2w
. o\
<<@1 -3 Ff,‘,ﬂ,,emawm@z> >= f f d6,d0,p(6,,6,)
n,m 0 0
« (@1 Y Fﬁ::)neme'ﬂmﬁz>2

=!min, (19)

where p(6,,0,) is the probability density. The minimization
condition leads to a linear system

27 (2w
f f d01d192p(91, gz)ein01+im92
0 0

27 (27
=2 Fy f f d6,d6p(6,,0,)e "R O+itm) 0,
k,l 0 0
(20)

Replacing the integration over 6, 6, through the integration
over the time according to

27 (27 1 T
(("')>=j J p(91,92)(“')d01dﬂzﬂ}f ()t
0 0 0
(21)

[this expression is analogous to Eq. (10)], we can rewrite this
system as

E An+k,m+]F§$) = Bn,m, (22)
kil
where
(T ,
An+k’m+, = ;j dt gl("+k)@1(t)+l(m+l)®2([)’ (23)
0
0(7) A A
B, = %J d@lem@l”m@Z. (24)
0

Similar to Eq. (15), we can also write Egs. (23) and (24) as
sums over the discrete time series:

12
_2 ei(n+k)®l(zj)+i(m+l)®2(zj) , (25)

ij=1

An+k,m+l =
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N, —1
_ 1 pz l(tj+l) - ®](lj_1)e,-n1(,].).,.,-,,12(,!.)
n,m .
N,-2 i 2

B

(26)

For the second protophase 6,, the corresponding equations
read

E An+k,m+lFl(3) = Cn,m’ (27)
k1l
where
1 (92D ' '
Cnm — _f d®zem®1+tm®2. (28)
o T O

These formulas solve the problem of finding the coupling
functions f?) in Eq. (6) from the linear equations (22) and
27).

B. From protophases to phases

Now we want to find a transformation from the pro-
tophases satisfying Eq. (6) to phases ¢ ,, which satisfy Eq.
(2). We immediately see that this condition is not well de-
fined, as in system (2) we have a clear separation between
terms of the coupling g2 and the natural frequencies ),
only if the latter are known. Otherwise, this separation is
ambiguous, because coupling functions ¢'""? generally con-
tain constant terms. Therefore, here we have to make an
additional assumption: we assume that the coupling terms
“oscillatory” depend on the forcing phase. This means that
the following conditions are valid:

2 21
J q(l)(¢1,¢2)d¢2=f q(z)(¢2’¢1)d¢1=0- (29)

0 0

This assumption is required because we cannot recover the
components of the phase dynamics which are independent of
the forcing phase. We will discuss this condition in more
details below, after obtaining equations of the dynamics.

Let us write the transformations 6, ,— ¢;, in a form
similar to Eq. (9):

d¢1 (1) d¢2
— = 0,), —= @ (o S 30
46, a( 1) 46, a( 2) (30)

with the normalization condition
21
f a0 do=2. (31)
0

Then Egs. (6) can be rewritten as the equations for ¢, »:

d_d)l = 0_(1)(01”41)(01’ 6>), d_‘f;z =

r a?(6,)1?(6,,6,).

(32)
Comparing the latter with Egs. (2) we obtain

w;+ ¢V (b, b)) = aV(6)11(6,,6,), (33)
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w0y + ¢y, b)) = 02(0,)12(6,,6,).

Integrating (33) and using the conditions (29), we finally
obtain
<1)((9) 27
o
wr= = J depof"(6,,6,), (34)
2 )
<2)((9) 2
o
w2=—2J def2(6,,6,). (35)
2 )

Changing the integration variables to 6, , we obtain a closed
system of equations for unknown functions ¢'""? and con-
stants w, ,, provided the functions 12 are given:

_ 0'(1)(91)

27
J d6,a'?(0,)11(6,,6,), (36)
0

_ 0'(2)(92)

27
J d6,a'V(6,)12(6,,6,). (37)
0

This is a nonlinear system that can be easily solved numeri-
cally (two methods are described in the Appendix). After
solving this system we obtain w;, and the transformations
aV(6,) and o@(6,), which can be represented as Fourier
series:

(o) =25, dD(6) =2 5P (38)

With these results we compute the phases ¢; and ¢, from the
protophases 6, and 6, by integration of Egs. (30):

(1)

ACHE (emh - 1), (39)
n#0 N
2)
b:(0,)=0,+ 2 & (eMf2-1).
nt0 N

From ¢, and ¢, and their derivatives, which are already
given by Egs. (32), we finally obtain by substitution the ex-
pressions for the phase dynamics:

dé,

o =g (¢, b)) = E Qn],)n ilngytmey) (40)
do )

d_t2 = f](z)(d’z, NES 2 Qﬁr)nel(wﬁm(b')-

After we have derived the equations for the phases, we
would like to discuss again the assumption made at their
derivation. For simplicity, we will speak about the equation
for ¢, only and drop for the moment the upper index. Let us
represent the equation for ¢, as

b= +q(d ) =w, + qo+q(p)) +q(dy, ), (41)

where the separation of the term g(¢,) can be made unam-
biguously if the condition [, 3”(7(¢,,¢2)d¢2=0 is imposed.
The terms on the rhs of Eq. (41) can be interpreted as fol-
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lows: w, is the natural frequency, g, is a constant shift of this
frequency due to the coupling, the term g(¢,) is the
coupling-induced permanent (in the sense that it does not
depend on the driving phase ¢,) inhomogeneity of the phase
rotation, and g is the part of the coupling that explicitly de-
pends on the driving phase. In our derivation of the phases
from protophases we have assumed that the term g is not
present; if it is present, we make here an approximation by
neglecting it. This appears to be unavoidable: indeed, the
main reason for transforming from protophases to phases is
in the obtaining a maximally homogeneously rotating phase.
Thus during the transformation we “cleanse” all inhomoge-
neities, those due to the protophases, but also those that are
coupling induced, the latter being described by the term g.
Since we cannot separate protophase-induced and coupling-
induced inhomogeneities, we prefer to cleanse both of them.

As a result, in the obtained system (40) the term g(¢,)
=EnQn,Oe""‘/’1 is absent, as according to the construction
0,0=0, if n#0. Still, we have an uncertainty in the separa-
tion of the terms w; and gy; we discuss this problem in the
next subsection.

C. Restoring natural frequencies

The constant terms in the reconstructed equations (40) are
QO' 2)—(» 2+q(l 2) They yield the natural frequencies only if
the constant terms qol ) in the coupling vanish. In the ex-
amples we studied this was not the case. Nevertheless, if data
sets from at least rwo observations of the same oscillators
with d1fferent though unknown, coupling strengths are avail-
able, 510 ) can be computed under some assumptions, mak-
ing the estimation of natural frequencies more precise.

We shall now discuss this issue, for simplicity, for the first
oscillator only, again dropping the upper index. The main
assumption is that the coupling functions for observations
with different coupling strengths [we denote those by (a) and
(b)] have the same form and differ by their amplitudes only.
In other words, the constant terms g, are proportional to the
norms of the phase-dependent terms:

(@  pft@)
90 ab) _ "1 Alab)2) V2
(b)_N(b N b)‘(E |qum)|2) ’ (42)

where the summation is over all terms except for Q. From
this assumption we can easily obtain the natural frequency
by making an extrapolation to the case of vanishing cou-

pling:

(b) Qoo o
©1= 000~ - /\/‘b>Mb (43)
A similar equation can be written for the frequency of the
second oscillator.

D. Invariance of recovered coupling functions

Finally, we demonstrate that the coupling functions, re-
covered with the help of Egs. (34)—(37), are observable in-
dependent; this is valid at least for a wide class of nondegen-
erate observables preserving the main frequency. Suppose
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that we start the reconstruction procedure with a different
pair of observables ¢ ,, related to old ones 6, ,, via a trans-
formation

do, = Y12,
dip »

Then,

do » _ de,db , _
din, do\,di,
with 12 =¢1-25(12) Next,

B(I’Z)’

Similar to Egs. (36) and (37) we write the equations for the
transformation i , — ¢, 5:

(1) 2
) = % f i (g (i, ),
T Jo

(2) 2
Wy = BZ—(%)f d‘/’IB(l)(l/fl)g(z)(l/fz,l/fl)- (44)
™ 0

Substituting here %, g2, and diy », one can easily see
that Egs. (44) are equivalent to Egs. (36) and (37).

V. NUMERICAL EXAMPLES
A. Data from a phase model

As the first example, we take coupled phase oscillators—
i.e., a system of coupled differential equations for phase dy-
namics in the form of Egs. (2):

b=, +¢, sin(¢,— ¢, - B)),

by = w; + &, sin(¢y — b — Bo). (45)

The parameters are w,=1, w,=(\5-1)/2, B,=m/4, B,
=-—m/3, £,=0.05, and &,=0.03. As the protophases we took
distorted phases, calculated according to 0;,=d,
+ %sin(@l!z) + %COS(Z@Lz). A reconstruction of the equations
of motion (6), in terms of protophases 6, », leads to the func-
tions f2, depicted in Fig. 8(a) and 8(b). Clearly, these
strongly differ from the actual coupling functions in Egs.
(45). The absolute values of Fourier coefficients of the re-
constructed functions |F\" [=0.050 43 and |F{¥,|=0.0302
are very close to the true values |F (11’_21)|=81’2; however other
coefficients do not vanish and are not small (e.g., F(,l_zz)
=0.011 78). Application of our method, described in Sec.
IV B, provides coupling functions in terms of genuine phases
&1 5; these reconstructed functions are shown in Figs. 8(c)
and 8(d). They are in full agreement with the rhs of the
original equations (45): the absolute values of the Fourier
coefficients [Q{");|=0.049 94 and [Q{),|=0.2994; all other
coefficients are smaller by at least two orders of the magni-
tude.
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0 o1

FIG. 8. (Color online) Reconstruction of phase dynamics of
coupled oscillators (45) from a time series of protophases. Top pan-
els: functions 712 governing the dynamics of the protophases ac-
cording to Eq. (6). Bottom panels: functions ¢ governing the
dynamics of genuine phases, obtained from functions {2 with the
help of the transformation of Sec. IV B. These functions agree very
well with the true coupling functions in the original equations (45).

B. Data from noisy van der Pol oscillators

In this subsection we test the described method using a
system of two coupled noisy van der Pol oscillators

&+ (1 =2, + vix, = e(d, — %)) + d& (1),

).(/:2 + (1 - X%)XZ + V%)CZ = 8()&1 - )Cz) + dgz(t) . (46)

Here v =1, VZ:(V"g—l)/Z, and noise is Gaussian with cor-
relations (&,()&,(1"))= 6, ,8(t—1"). For this model the equa-
tions for the phases are not known analytically, so we just
check the reliability of the method and its robustness toward
dynamical and toward noise due to the measurement. The
latter was implemented by calculating the protophases from
the embedding:

X1,2—O.2+ 7]1) (47)

0,,= arctan(
’ x1,2—0.2+ m

where 7, , are random variables uniformly distributed from
—d to d. The results for a moderate coupling £=0.1 and the
intensity of both noise sources d=0.05 are presented in Fig.
9. The upper row shows the reconstructed functions f{1-?)
describing the dynamics in terms of the protophases 6 ,.
One can see a strong variation of these functions with the
“own” variable (i.e., f!) strongly varies with 6, etc.). Next,
we applied one-dimensional transformations to each of the
protophases separately, as described in Sec. III. In these new,

improved protophases 51 and 52 the dependence on the
“own’” variables is almost cleansed, as one can see from the
middle row of Fig. 9. Finally, we applied the full two-
dimensional transformation as described in Sec. IV to the
improved protophases and obtain the final system for the
genuine phases with functions presented in the bottom row
of Fig. 9. One can see only a small difference between the
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improved protophases and genuine phases. Thus, in cases
where a high accuracy is not needed or the data sets are
rather limited, performing a one-dimensional transformation
might be sufficient for practical purposes. In any case we
suggest to perform such a transformation prior to the two-
dimensional one, as it is rather fast and significantly reduces
the computational efforts.

For a quantitative comparison of the reconstructed func-
tions we again can compare their Fourier coefficients. We
present here the results for the main interaction terms
~e'(%1702) and ~¢i(#1=%2)_ The absolute values of the Fourier
coefficients of the reconstructed functions for protophases
are |F{") [=0.03451 and |F{?|=0.22779. After a one-

dimensional transformation we obtain |F' (11)_1 =0.021 30 and
|F?),|=0.033 51; the two-dimensional transformation yields

|F{"),|=0.020 77 and |F{?||=0.034 18. We see that for this
example the coupling functions for protophases not only pos-
sess additional terms which should be eliminated, but also
the amplitudes of the true modes are significantly distorted.
In summary, this example again demonstrates that a transfor-
mation to true phases is a necessary step in model recon-
struction.

Finally, we demonstrate the robustness of our approach
with respect to noise by plotting the largest Fourier coeffi-
cients of reconstructed coupling functions versus the noise
intensity. The results, shown in Fig. 10, indicate that the
recovered coupling functions are rather insensitive to the
noise level.

PHYSICAL REVIEW E 77, 066205 (2008)

FIG. 9. (Color online) Recon-
struction of the phase dynamics
for coupled van der Pol oscillators
with intrinsic and measuremental
noises. Upper row: functions f{-?
for the protophases, calculated
from the embedding given by Eq.
(47). Intensity of the intrinsic
noise is d=0.05; the measuremen-
tal noise is modeled by random
variables 7, ,, which are uni-
formly distributed from —d to d.

Middle row: functions ]7“’2) for
the improved protophases 51,2 ob-
tained by  applying  one-
dimensional transformations to
0, . Bottom row: functions g2
governing the dynamics of genu-
ine phases.

o
AN
N

5%

¢2

VI. PHYSICAL EXPERIMENT WITH COUPLED
METRONOMES

Apart from the numerical examples above, we searched
for experimental evidence supporting the efficacy of our the-
oretical approach. For this purpose, we performed a version
of the classical Huygens experiment, examining two me-

0.05
0.04
3z
&
— &
0.03
IS4
0.0
, S——
001+ 1 \ \
T 005 00500750

FIG. 10. (Color online) Robustness of reconstructed coupling
functions ¢'"»?) with respect to noise. Absolute values of three larg-
est Fourier coefficients in;f) of ¢! are plotted against the inten-
sity of the both intrinsic and measuremental noise d. It is seen that
the variation of coefficients is rather weak. Bold black lines and
solid red lines correspond to the first and second systems, respec-
tively. Circles, squares, and diamonds represent |Q(11,’_21) Qg{iz) , and
|Q(3{121) , respectively.

s
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PHYSICAL REVIEW E 77, 066205 (2008)

FIG. 11. (Color online) Two
metronomes, placed on a rigid
support (upper panel). The image
of the rubber band is artificially
enlarged for visibility. Scheme of
the experimental setup (lower
panel). The motion of the metro-

nomes’ pendulums has been
film mini-DV camera for
Light Source Dark room . ed by ? ca} . era 1o
Light three experimental conditions: no
— Reflectors coupling and coupling via one (as
:] 0 shown here) or two rubber

band(s).

Metronomes

Video - Camera
distance approx. 4 m

chanical metronomes (Cherub WSM-330), placed on a rigid
base; see Fig. 11(a) (cf. [25]). The oscillation of the metro-
nomes’ pendulums was observed for three different experi-
mental conditions: (i) metronomes are uncoupled, (ii) pendu-
lums of the metronomes are linked by a rubber band, and
(iii) pendulums of the metronomes are linked by two rubber
bands.

The first measurement was used to determine the autono-
mous frequencies. Measurements (ii) and (iii) were used to
reconstruct the coupling functions for two different coupling
strengths and to recover the autonomous frequencies from
observations of coupled systems by virtue of the method
described in Sec. IV C. The experiment was performed twice
for two different settings of autonomous frequencies.

The rubber bands were customized by longitudinal dissec-
tion to have a spring constant of about k=0.08 N/m; within
the range of operation, k is nearly constant. The diameter of
the rubber band was about 60 wm. The motion of the met-
ronomes’ pendulums was filmed by a JVC GR-D245E digital
video camera (cf. [26]), with an exposure time of 1/1000 s,
resolution 720X 576 pixels (interlaced), and a rate of 25
frames/s, thus providing a time resolution of 0.04 s. The
duration of the recording was about 140 s.

The camera was placed on a stable tripod in front of the
metronomes at a distance of =4 m. A piece of a circular
reflecting material appearing as a dot on the camera image
was pasted to the top of each pendulum. The metronomes
were positioned in a dark room. The reflecting material con-
sisted of microprismatic reflecting film having the property
to return the light to its source. Therefore, the light source
was placed directly on the camera and directed at the metro-
nomes in order to have the light source as close as possible
to the optical system of the camera. This setup provided an
excellent contrast ratio between the reflecting dots on the
pendulums and the remaining structures which were effec-
tively invisible on the captured images.

After the video capture the data was transferred to a PC
via the digital fire wire interface. The movies were split into
single-image frames. No blurring or any other image “en-

hancement” algorithm was allowed in the capturing soft-
ware. The frames were de-interlaced and split vertically into
two image parts, one for the left and one for the right pen-
dulum.

A motion tracking algorithm was used for off-line pro-
cessing and recovering of the horizontal and vertical coordi-
nates of motion in time for each metronome on a frame-by-
frame basis. The algorithm was implemented using the open
source WXDEV-C++ development package [33]. Image pro-
cessing was greatly facilitated by using the open source CIMG
package [34]. The position detection algorithm uses essen-
tially the computation of the cross-correlation function for a
given frame with a picture of metronomes at rest. The shift,
corresponding to a maximum of the cross correlation of each
frame with the rest image, provided the position of the mov-
ing light dot.

As the scalar observable characterizing the state of met-
ronomes, we have chosen the x coordinates of the pendulum
tops of the two metronomes since the horizontal resolution of

200

4 6
time [s]

FIG. 12. (Color online) Time series of horizontal displacement
for the case of metronomes, coupled via one rubber band. These
signals are provided by the motion-tracking algorithm applied to
video frames. Only 10 s out of =140 s are shown. The time series
X, is shifted upwards for better visualization.
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the camera is higher than the vertical one. In Fig. 12 short
segments of the time records of these observables X; and X,
are presented. From these observables, the protophases were
obtained by means of the Hilbert transform with a zero off-
set.

Next, we used our approach to reconstruct the coupling
functions f? in terms of the protophases 6, » and to trans-
form them to observable-independent coupling functions
g"?); the results are shown in Figs. 13 and 14. Comparing
the top and middle rows in Fig. 14, one can see that the
coupling functions for two different interaction strengths
have quite a similar form; only the amplitude is rescaled.
Thus, the assumption used for the recovery of autonomous

2n
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FIG. 13. (Color online) Cou-
pling function for the protophases
of metronomes. Top row: coupling
with one rubber band. Middle
row: coupling with two bands.
Bottom row: uncoupled systems.
Points show the original data; the
surfaces depict the result of fitting.
Notice the difference in the verti-
cal scales of the graphs. The cou-
pling function for the protophases
of uncoupled systems does not
vanish, but demonstrates a depen-
dence on the “own” protophase.

frequencies is justified. Indeed, using the analysis described
in Sec. IV C, we were able to recover them with a good
precision; see Fig. 15.

VII. IMPLICATIONS FOR CHARACTERIZATION
OF COUPLING

Characterization of the strength, directionality, and delay
in coupling from observed phases became recently a popular
tool of data analysis, with applications to brain activity
[9,11], cardiorespiratory interaction [7], electronic circuits
[27], etc. In the following, we discuss the importance of the

FIG. 14. (Color online) Cou-
pling functions for the phases, ob-
tained after application of our
method to functions in Fig. 13.
Top row: coupling with one rub-
ber band. Middle row: coupling
with two bands. Bottom row: un-
coupled systems. The vertical
scales are the same as in Fig. 13,
so that one can clearly see the re-
duction of the phase dependence
of the coupling function in the
bottom row.
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0 0.02 0.04 0.06 0.08
) /27 [Hz]

FIG. 15. Recovery of autonomous frequencies of two metronomes from observations of motion of coupled systems. Top panels, first
experiment: autonomous frequencies are w;/(27)=1.434 Hz and w,/(27)=0.929 Hz. Bottom panels, second experiment: autonomous
frequencies are w;/(27)=1.305 Hz and w,/(27)=0.797 Hz. Constant terms of the coupling function @, , are plotted vs the norm of its
oscillatory component A2, The recovered natural frequencies are 1.437+0.004 Hz and 0.92+0.02 Hz (first setting) and
1.295+0.006 Hz and 0.795*0.01 Hz (second setting); they are in good agreement with the frequencies of uncoupled systems. Error
bounds for linear regression, estimated from an analysis of disjoint segments of the full records, are shown as gray stripes.

above-proposed transformation #— ¢ for the precision of
this analysis.

A. Implications for the synchronization analysis

Here we consider the drastic effect, first discussed by
Izhikevich and Chen [28], of the difference between the pro-
tophase and the phase on quantification of interrelation be-
tween the phases. Typically, after calculating the protophases
0, and 6, from the bivariate data, one computes the so-called
“synchronization index” [29,30]

Y = [0 (48)

More precisely, the index v, ,, quantifies an interrelation be-
tween the protophases and cannot distinguish between syn-
chronization and other types of interaction: e.g., modulation
(see discussion in [12]). For the case of a synchronizing in-
teraction, 7, ,,~ 1 indicates n:m locking.

Below, we analytically study two examples and demon-
strate that the value of the synchronization index (48), com-
puted from protophases, can be significantly biased with re-
spect to the true value, computed from genuine phases. We
emphasize that this bias is solely due to the difference be-
tween phases and protophases and not due to numerical arti-
facts, not discussed here.

For this goal we first suppose that the synchronization
index is calculated for independent oscillators; certainly, in

this case one expects it to vanish. However, it is easy to see
that Eq. (48) yields

Yam= K1) =|51V)|S 57

; (49)

where S, is defined according to Eq. (14). Thus, generally,
the computation of index (48) for independent oscillators
from protophases provides a spurious, nonzero, value, and
one obtains vanishing synchronization indices for genuine
phases only, for which S,=46, . [An alternative approach,
recently suggested by Daido [32], is to compute the synchro-
nization index as %,,,=[((e"%—(e"%))(e™m%2—(e™M%))")|.
This measure yields correct value 7,,,=0 for uncoupled os-
cillators.] For illustration, consider a particular relation be-
tween phases and protophases [see Eq. (30)], taking func-
tions o"?=1+a,, cos(6,,), where a,=const, |a,,|<1.
Computation of the 1:1 index from protophases yields 7y, ;
a'Taz; i.e., y;; can reach 0.25.

Consider now the other limit case, when two oscillators
are perfectly 1:1 locked, so that ¢, — ¢, =a, where a=const.
Computation of the synchronization index vy, ; from genuine
phases certainly provides

Vi1 = |<€i<¢]_¢2>>| =[e™ )| =1.

Computation of the synchronization index from protophases
provides
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— |<ei(01—02)>| — |<ei(r1(¢1)—72(¢2))>| - |<ei(r1(¢l)—r2(d)1+a))>|’

where the functions ) ,=r|,(¢;,) are functions inverse to
those defined by Egs. (40). Performing the average, we write

Y11=

1 (" .
_f d¢ ellr@-n(+a)]|
277 0

Considering a particular case r,(¢; )= +a;, cos(¢p ,
— 1 5), with constants a; , and i, 5, |a; | <1, we obtain after
integration

2, 2
Yi1= ol Nai + a3 —2a,ay cos(¢y — ¢

where Jj, is the Bessel function. Its argument is smaller than
2, which implies that the spurious value of the synchroniza-
tion index can be as low as 0.22—i.e., =4 times smaller than
the true value.

To summarize this section, we emphasize that the syn-
chronization index computed from protophases can be both
over- and underestimated; this bias can be essential. The
transformation from the protophases to phases prior to the
calculation of the index (48) allows one to obtain the latter in
a reliable and observable-independent way.

B. Implications for directionality analysis

Directionality of the coupling of two oscillators may be
inferred from the reconstructed phase dynamics. Several
methods of quantification and a discussion can be found in
[6,16,18]. The main idea is to quantify the mutual influence
of the first (second) phase on the time derivative of the sec-
ond (first) one. In particular, this influence can be quantified
by means of the indices

27 (2 (1 2)\2
Cl,2 4772f f (&qﬁz, ) d¢d s, (50)

calculated from the functions ¢, , in Egs. (2). Furthermore,
the directionality of coupling can be quantified by a single
index

d=2"% (51)
et

which varies from d=-1, if system 2 drives system 1, and to
d=1, if the unidirectional driving is in the other direction;
the values —1 <d <1 correspond to a bidirectional coupling.
In the case when protophases are used instead of the
genuine phases, the indices ¢, are calculated in a similar

way, but in terms of the reconstructed functions f(l 2.

27 (2 f(12
c12—4772f f ( azl)deldaz (52)

In order to find a relation between ¢ ; and ¢ 5, we introduce,
similarly to Eqs. (30), the transformation functions s!-?):

deo
d711=s“>(¢1>, df,sfs(z)wz), (53)

with an obvious relation s'""?(¢, ,)=1/0"?(6, ). Comput-
ing the derivative of Eq. (33) we obtain
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aq(]’z)(¢1,¢2) 12 )ﬁf oy,
12
A, 36y, depyy’
which yields
(¢1) 36] (L, 2)(¢1’¢2) 67f(1’2)(91’ 6,)

(¢2) ﬁ¢2,l (962,]

Substituting into Eq. (52) and changing integration variables,
we obtain

27 (2 (12) 2
Cl 2= 4772] f (19¢21 ) [S(l’2)]3[5(2’1)]_1d¢1d¢2-
(54)

This expression differs from (50) by an observable-
dependent factor [s""?P[s?D]! in the integral. Thus, the
indices calculated for protophases generally differ from those
calculated for genuine phases. In the case of a unldlrectlonal
coupling, say, from system 1 to system 2, both f— and —q—
vanish, and, hence, the directionality can be correctly char-
acterized both from phases and from protophases. However,
in the case of a bidirectional coupling, the error due to using
protophases instead of genuine phases can be highly signifi-
cant.

A natural way to achieve quantification of directionality in
an invariant fashion is as follows. First, we reconstruct Eqs.
(2), as discussed in details above. For the given equations,
the strength of the action of one system on the other is un-
ambiguously determined by the coupling functions g2 and
can be quantified by their norms NV [cf. Fig. 14 and Eq.
(42)]. A relative dimensionless measure of this action is
given by

A/(I,Z)
C1,2 = W . (55)
0,0

Defined in this way, the coefficients C,, provide, together
with Eq. (51), an observable-independent measure of direc-
tionality. Note that computation of the directionality index
via Eq. (55) does not require computation of derivatives [cf.
Eq. (54)], which essentially improves the numerical perfor-
mance.

We emphasize, again, that here we do not bring into dis-
cussion the effects of the finite-data-size effects and noise on
the estimation of indices used for quantifying the coupling
characteristics (synchronization, coupling coefficients, and
directionality). The effects we consider are solely due to the
difference between phases and protophases and can be elimi-
nated by the above proposed transformation.

VIII. CONCLUSION

In this paper we have described a method that bridges the
gap between the theoretical description of coupled oscilla-
tory systems and the data analysis. The key idea of the ap-
proach is to distinguish between the protophases, which are
computed from scalar signals with the help of the Hilbert
transform or equivalent embedding methods, and genuine
phases, used in the theoretical treatment of coupled oscilla-
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tors. Contrary to phases, protophases are observable depen-
dent and nonuniversal. Therefore, an invariant description of
the phase dynamics can be obtained only after a transforma-
tion from protophases to phases. We provided explicit rela-
tions for the corresponding transformation for the cases of an
isolated and two interacting oscillators, and illustrated them
by several numerical examples. We thoroughly discussed the
reconstruction of invariant phase dynamics equations from
bivariable observations of oscillatory time series. The tech-
nique we developed is applicable to weakly and moderately
coupled oscillators—i.e., when the amplitudes are enslaved
and the full dynamics is represented by two phases. Note that
the validity of our technique goes far beyond the validity of
the first-order approximation in the coupling strength used in
the perturbation theory. The approach excludes the synchro-
nous regime when the two phases become functionally re-
lated. We emphasize that our transformation from pro-
tophases to phases is not a filtering or an interpolation, but an
invertible transformation that preserves all the relevant infor-
mation and, at the same time, cleanses all observable-
dependent features.

Furthermore we discussed the implications of our ap-
proach for characterization of the interaction from data. As
first pointed out by Izhikevich and Chen [28], the synchro-
nization index, computed without such a cleansing, can be
significantly overestimated. Our results show that the esti-
mates can be biased both upwards and downwards. After the
transformation to genuine phases the calculation of the syn-
chronization index becomes reliable. Moreover, we showed
that the coupling strength and directionality can be effi-
ciently quantified from the reconstructed equations. In this
way, one significantly improves the performance of previ-
ously used approaches that exploit the dynamical equations
in terms of protophases (see, e.g., [6,16-18]).

We have also shown, both theoretically and experimen-
tally, that autonomous frequencies of self-sustained oscilla-
tors can be recovered from at least two observations of
coupled dynamics if these observations correspond to differ-
ent, though unknown values of coupling. Next, we have
demonstrated that our techniques can be straightforwardly
applied to real noisy data obtained in both physical and
physiological experiments. The reconstruction of the equa-
tion for phases in the form used in the theoretical analysis
significantly contributes to a better comparison of experi-
ments and theory.
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APPENDIX: SOLVING EQUATIONS FOR THE PHASE
TRANSFORMATIONS

The system (34)—(37) can be solved in two different ways,
described below. In the first method we employ iterations,
starting, e.g., from the uniform functions o2 =1. Then we
calculate the frequencies w,, from the normalization condi-
tions

do,

w L r ’

(A1)
2(0,)11(6,,6,)d6,

do,

D(6)f2(6,,0 )del

=l -

Substituting this into (36) and (37), we get the next iteration
for the functions o

(0, = 2mey . (A2
f 0'(2)(92)1(“)(91, 92)d92
0
2
5'(2)(02) = ube!

f V(6,1 (6,,6,)d6,
0

These iterations converge rather fast. In the practical imple-
mentation we used the functions f and o defined on a grid.

In the second method these functions are represented via
Fourier series:

0,(1,2)(01,2) — 2 Sﬁll’z)e"’ﬁlvz,
n

f“) — 2 F;ylk)eilﬁﬁikez’
Lk

(A3)

f(z) — 2 F;’Zk)ei102+ik0l.

Lk

Substitution of these expressions into (36) and (37) yields
after integration a nonlinear set of equations for unknown
Fourier coefficients S 511’2) :

E Sill)S@)F(l)

Jj-n,—m =Wy 5j,07
n,m n,m

E S 2)5(1)F(2)

Jj-n,—m w25j,0

(A4)

This nonlinear system of coefficients can be solved numeri-
cally using a standard routine for finding a root of a nonlin-
ear system, e.g., the MATLAB algorlthm FSOLVE. Notice that
from the normalization follows SOl 2=,
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