
Reconstructing phase dynamics of oscillator networks

Björn Kralemann,1 Arkady Pikovsky,2 and Michael Rosenblum2

1Institut für Pädagogik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 75, 24118 Kiel, Germany
2Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24=25,
14476 Potsdam-Golm, Germany

(Received 1 February 2011; accepted 16 May 2011; published online 28 June 2011)

We generalize our recent approach to the reconstruction of phase dynamics of coupled oscillators

from data [B. Kralemann et al., Phys. Rev. E 77, 066205 (2008)] to cover the case of small

networks of coupled periodic units. Starting from a multivariate time series, we first reconstruct

genuine phases and then obtain the coupling functions in terms of these phases. Partial norms of

these coupling functions quantify directed coupling between oscillators. We illustrate the method

by different network motifs for three coupled oscillators and for random networks of five and nine

units. We also discuss nonlinear effects in coupling. VC 2011 American Institute of Physics.

[doi:10.1063/1.3597647]

Many natural and technological systems can be described

as networks of coupled oscillators. A typical problem in

their analysis is to find dynamical features, e.g., synchro-

nization, transition to chaos, etc., in dependence on the

properties of oscillators and of the coupling. Here, we

address the inverse problem: how to find the properties

of the coupling from the observed dynamics of the oscilla-

tors. This may be relevant for many experimental situa-

tions, where the equations of underlying dynamics are

not known, especially for biological applications. We

present here a method which is based on invariant recon-

struction of phase dynamics equations from multivariate

observations, where at least one scalar oscillating observ-

able of each oscillator must be available. The method

includes several algorithmic steps which are rather easy

to implement numerically. We illustrate the method by

numerical examples of small networks of van der Pol

oscillators.

I. INTRODUCTION

Dynamics of coupled self-sustained oscillators attracts

vast interest of researchers, both due to a variety of nontrivial

effects and to numerous applications in physics, chemistry,

and life sciences. In modeling, one usually focuses on the

relations of the dynamical features, such as synchronization

patterns, to the coupling structure of the underlying network.

In experimental data analysis, an inverse problem typically

arises, where one wants to reveal the interactions from the

observed dynamics. A simple consideration demonstrates

that this task is really challenging and highly nontrivial:

indeed, computation of correlations and=or of a synchroniza-

tion index between the oscillators does not solve the prob-

lem, because the interactions are generally non-reciprocal

while both the correlation and the synchronization index are

symmetric measures.

There exist several approaches for the determination of

directional coupling. The first one exploits various informa-

tion-theoretical techniques and quantifies an interaction with

the help of such asymmetric measures as transfer entropy,

Granger causality, predictability, etc.1–5 The second

approach is based on the idea of generalized synchronization

and relies on state-space based criteria of mapping of nearest

neighbors (see references in Ref. 6). The third approach

developed in our previous publications,7,8 see also Refs. 9

and 10, is based on an estimation of phases from oscillatory

time series and on a subsequent reconstruction of phase dy-

namics equations and quantification of coupling by inspect-

ing and quantifying the structure of these equations. The

disadvantage of the third, dynamical, approach in compari-

son to the information-theoretical one is that it is restricted

to the case of rather weakly coupled oscillatory systems.

However, for this widely encountered case, the dynamical

approach has clear advantages: it works with phases, which

are most sensitive to interaction and it yields description of

connectivity which admits a simple interpretation. This con-

sideration is supported by several comparative studies.6,12

The dynamical approach has been tested in a physical experi-

ment16 and used for analysis of connectivity in a network of

two or several oscillators in the context of cardio-respiratory

interaction,17 brain activity,18–20 and climate dynamics.21

Notice that there is an intermediate group of techniques

which apply informational measures to time series of

phases.8,13–15

Recently, we have essentially improved the dynamical

approach by suggesting a technique for an invariant recon-

struction of the phase dynamics equations from bivariate

time series.22–24 Invariance in this context means that the

reconstructed equations do not depend on the observables

used, at least for a wide class of observables. This technique

was tested on numerical examples as well as in physical

experiments with coupled metronomes22,23 and with electro-

chemical oscillators.25 In this paper, we extend the technique

to cover the case of small networks of interacting oscillators.

Starting from the scalar times series for each node of the net-

work, we recover the directional connectivity. Note that,
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contrary to other papers exploiting phase dynamics

approach,10,11 we do not assume a closeness of oscillator fre-

quencies or a uniform distribution of their phases. Before

proceeding with the presentation of the method, we discuss

what kind of connectivity we reconstruct.

Suppose an oscillator k is effected by an oscillator l via

a physical connection, e.g., a resistor, an optical fiber, a syn-

apse, etc. Mathematically, this is reflected by an explicit de-

pendence of the time evolution of the state variables of

system k on the state variables of system l, cf. Eq. (1) below.

We say that these oscillators are directly linked, or structur-

ally connected. If the phase dynamics of oscillator k explic-

itly depends on the phase of system l, we say that the

oscillators are effectively phase connected. The important

issue, which to the best of our knowledge has not yet been

addressed theoretically, is that the connectivity in terms of

the phases differs from that in the original (full) equations.

The reason for this is the appearance of additional terms in

high-order approximations in the process of a perturbative

reduction of full equations to the phase dynamics. As a

result, some nodes, which are not directly connected, may

appear effectively phase connected. Although we are not

able to demonstrate the difference between structural and

effective connectivity analytically, we provide below some

qualitative arguments and support them by numerics. We

explain that our method, like any other method based on the

phase dynamics, yields the information on the effective

phase connectivity. Next, we note that oscillators k,l can ex-

hibit correlated or synchronized behavior due to a common

driving from oscillator m. This correlation can appear even

in the absence of any direct connections between k and l (see

the discussion of Fig. 3(c) below); this case is sometimes

denoted as functional connectivity. We demonstrate that our

approach reliably distinguishes between correlation due to a

common input and true interaction.

The paper is organized as follows. In Sec. II, we discuss

the phase dynamics description of an oscillatory network and

the difference between the connectivity in full and phase

equations. Next, in Sec. III, we describe the basic method for

the phase dynamics reconstruction; it is illustrated in Secs. IV

and V. We summarize and discuss our results in Sec. VI.

II. PHASE DESCRIPTION OF OSCILLATOR NETWORK

We assume that an individual oscillator is described by

variables x, which satisfy a system of ordinary differential

equations (ODEs) _x ¼ GðxÞ, and that this equation system

possesses a stable limit cycle. The latter can be parametrized

by the phase u which grows uniformly in time,

_u ¼ x ¼ const, where x is the oscillation frequency. Nota-

bly, this phase parametrization is unique up to trivial shifts

and is invariant with respect to variable transformations.26,27

A network of N coupled oscillators can be represented

as

_xk ¼ GkðxkÞ þ eHkðx1; x2;…Þ; k ¼ 1;…;N; (1)

where e characterizes the coupling strength and the coupling

functions Hk generally depend on the states of all oscillators.

Note that generally the oscillators can be quite different, e.g.,

even the dimensions of state variables xk can differ. Of

course, the functions Gk can be different as well. If variables

xl are absent in Hk, we say that there is no direct coupling

from l to k. If the function Hk can be written as

Hk ¼
P

j 6¼k Hkjðxk; xjÞ, we call this type of coupling pair-

wise. Otherwise, if Hk contains terms, depending on at least

two variables acting on k, e.g., Hkjlðxk; xj; xlÞ, we speak

about cross-coupling.

If the coupling between the elements of the network is

not too strong,28 so that an attracting invariant N-torus exists

in the phase space of the full system (1), then the motion on

this torus can be parametrized by N phases:

_uk ¼ xk þ hkðu1;u2;…Þ; k ¼ 1;…;N: (2)

The new coupling functions hk can be approximately

obtained in the form of a series

hkðu1;u2;…Þ ¼ ehð1Þk ðu1;u2;…Þ þ e2h
ð2Þ
k ðu1;u2;…Þ þ…;

(3)

with the help of a perturbative reduction from Eq. (1) to

Eq. (2) (see Refs. 26 and 27 for details). However, to the

best of our knowledge, a derivation of the second-order and

the high-order terms has not yet been performed theoreti-

cally. Nevertheless, we can draw some conclusions about the

structure of hk. In the first-order approximation, h
ð1Þ
k depends

explicitly on phase ul only if Hk depends explicitly on xl,

i.e., if there exists a direct link l! k. Thus, if the coupling is

pairwise, then in the leading order of approximation only the

pairwise terms like ehð1Þkl ðuk;ulÞ appear on the right hand

side (RHS) of the system (2). However, in the higher approx-

imations, the RHS of Eq. (2) may contain high-order terms

which depend not only on the phases of directly coupled

oscillators, but on the other phases as well.29 Thus, generally

the phase oscillators Eq. (2) are all-to-all coupled. As a

result, the structural and the effective connectivities, i.e., the

structures of the functions hk and Hk, generally differ. It is

interesting to note that such a problem does not appear for

two coupled oscillators, where the phase dynamics terms in

all orders of approximation in e have the same structure. In

Sec. IV, we support the presented considerations by

numerics.

The main idea of our approach is to reconstruct the

phase dynamics (2) from multivariate time series; here it is

assumed that k-th component of the series represents the out-

put of the k-th oscillator. Next, we decompose the recon-

structed coupling functions hk into several components and,

comparing the norms of these components, characterize the

partial couplings between particular nodes. In fact, we attrib-

ute links only to those nodes for which the corresponding

norms are sufficiently large. As discussed above, the struc-

ture of the phase network (2), reconstructed in this way, gen-

erally differs from the structure of the original one.

However, as confirmed by numerical examples below, it rep-

resents the original network (1).

We emphasize that validity of the phase equations (2) is

not restricted to the range of coupling where the first-order

approximation, which can be obtained analytically,26 is
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sufficiently good. As long as an attracting invariant torus

exists, we can try to reconstruct Eq. (2) from data, although

the analytical derivation of these equations is not yet

possible.

Before proceeding with the description of the method,

we make another remark on the range of its validity. An im-

portant dynamical regime in system (2) is that of full or par-

tial synchrony, when the dynamics of the phases reduces to

a stable torus of lower dimension (partial synchrony) or to a

stable limit cycle (if all oscillators are synchronized). In

case of synchrony, our (and similar ones) technique

fails because the data points do not cover the original

N-dimensional torus and the coupling functions cannot be

reconstructed. Sufficiently strong noise or intentional per-

turbation of the network could cause deviation of the trajec-

tory from the synchronization manifold and help to infer

the dynamics, but discussion of this case goes beyond the

scope of this paper.

III. RECONSTRUCTION OF THE PHASE DYNAMICS
FROM DATA

The main assumption behind our approach is that we

have multivariate observations of coupled oscillators, where

at least one scalar oscillating time series ykðtÞ ¼ ykðxkðtÞÞ is

available for each oscillator. The first step is to transform

this observable into a cyclic observable. Typically, this is

done via construction of a two-dimensional embedding

ðyk; �ykÞ, where �y can be, e.g., the Hilbert transform of yðtÞ,
see Refs. 23 and 27 for a detailed discussion. Alternatively,

one can use for �y the time derivative of y. In all cases, the

data usually require some preprocessing, e.g., filtering. If the

trajectory in the plane ðyk; �ykÞ rotates around some center,

one can compute a cyclic variable hiðtÞ, e.g., by means of the

arctan function. As has been in detail argued in Ref. 23, in

this way we obtain not the genuine phase uk of the oscillator,

which enters Eq. (2), but a cyclic variable, or a protophase.

The latter depends on the particular embedding and on the

parametrization of rotations and is therefore not invariant.

This can be seen already from the analysis of an autonomous

oscillator: the described procedure generally yields a proto-

phase hðtÞ which rotates not uniformly, but obeys

_h ¼ f ðhÞ:

The transformation to the uniformly rotating genuine phase

u reads

uðhÞ ¼ x
ðh

0

dh0

f ðh0Þ;

where x ¼ 2p½
Ð 2p

0
f�1ðh0Þdh0��1

is the frequency of oscilla-

tions. For practical reason, it is convenient to determine not

the function f, but the probability density of the protophase

rðhÞ ¼ x
2pf ðhÞ . Thus, the transformation from the protophase

h to the phase u can be written as

uðhÞ ¼ 2p
ðh

0

dh0rðh0Þ:

Hence, a determination of the genuine phase from the data

reduces to a problem of finding the probability distribution

density of the obtained protophase h, which is a standard task

in the statistical data analysis. Practically, one can use either a

Fourier representation of the density rðhÞ, as in Ref. 23, or a

kernel function representation of rðhÞ.
After the transformation hkðtÞ ! ukðtÞ is performed, we

reconstruct the phase dynamics making use of the fact that

the time derivatives _uk are 2p-periodic functions of the

phases, in accordance with Eq. (2). These functions can be

obtained from the observed multivariate time series of

phases UkðtÞ with the help of a spectral representation tech-

nique23 or by means of a kernel function estimation. Here,

we present the formulas for the spectral technique (see Sec.

IV A in Ref. 23 for details), generalized for the case of more

than two oscillators:

FðkÞðu1;u2;…Þ ¼
FðkÞu ðu1;u2;…Þ
F
ðkÞ
d ðu1;u2;…Þ

;

Fu;d ¼
X

l1;l2;…

f
ðu;dÞ
l1;l2;…

expðil1u1 þ il2u2 þ…Þ;

f
ðuÞ
l1;l2;…

¼ 1

T

ðUkðTÞ

0

dUk expðil1U1 þ il2U2 þ…Þ;

f
ðdÞ
l1;l2;…

¼ 1

T

ðT

0

dt expðil1U1 þ il2U2 þ…Þ: (4)

As a result, we obtain the system of the phase dynamics

equations in the form

duk

dt
¼ FðkÞðu1;u2;…Þ

¼
X

l1;l2;…

FðkÞl1;l2;…
expðil1u1 þ il2u2 þ…Þ: (5)

The coupling functions FðkÞ describe all types of interac-

tions: pairwise, triple-wise, quadruple-wise, and so on. To

characterize them separately, we calculate the norms of dif-

ferent coupling terms (the partial norms), as follows. The

term F k
0;0;… is a constant (phase-independent) one, it corre-

sponds to the natural frequency of oscillations. The pairwise

action of oscillator j on oscillator k is determined by those

components of FðkÞ which depend on phases uk and uj only.

We quantify this action by the partial norm N ð2Þkjj ; note that

here the upper index corresponds to the order of interaction

(pairwise here). The partial norm can be computed as

N ð2Þkjj

h i2

¼
X

lk ;lj 6¼0

FðkÞ
0;…;0;lk ;0;…;0;lj;0;…Þ

���
���2: (6)

Correspondingly, the joint action of oscillators j,m on oscil-

lator k is determined by the cross-coupling terms containing

three phases uk;uj;um. This action is quantified by the fol-

lowing partial norm:

N ð3Þkjjm

h i2

¼
X

lk ;lj 6¼0;lm 6¼0

FðkÞ
0;…;0;lk ;0;…;0;lj;0;…;0;lm;0;…Þ

���
���2: (7)
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Similarly, we can compute the partial norm N ð4Þkjjmn, and

so on.

Now, we discuss the terms FðkÞ0;…;0;lk ;0;…;0 which depend

only on one phase uk and, therefore, cannot be attributed to

any interaction. In Ref. 23, these terms have been eliminated

by means of an additional transformation u ! u0, using

some additional assumptions on the structure of coupling. In

examples presented below, we checked that the difference

between the formulations in terms of u and u0 is rather

small. Therefore, we use the technique described above and

neglect the small terms FðkÞ0;…;0;lk ;0;…;0.

IV. CASE STUDY: THREE COUPLED VAN DER POL
OSCILLATORS

In this section, we test the presented technique on a sys-

tem of three coupled van der Pol oscillators:

€x1 � lð1� x2
1Þ _x1 þ x2

1x1 ¼ e r12ð _x2 þ x2Þ þ r13ð _x3 þ x3Þ½ �
þ r11gx2x3;

€x2 � lð1� x2
2Þ _x2 þ x2

2x2 ¼ e r21ð _x1 þ x1Þ þ r23ð _x3 þ x3Þ½ �
þ r22gx1x3;

€x3 � lð1� x2
3Þ _x3 þ x2

3x3 ¼ e r31ð _x1 þ x1Þ þ r32ð _x2 þ x2Þ½ �
þ r33gx1x2: (8)

Here, the matrix rkl, with entries zero and one, determines

the coupling structure (topology) of the network: for non-di-

agonal terms, rkl ¼ 1, if there is forcing from oscillator l to

oscillator k, and rkl ¼ 0, otherwise. Diagonal terms rkk

determine the presence or absence of cross-coupling. Param-

eters e and g describe the intensity of the pairwise and of the

cross-coupling, respectively. In all examples of this section,

we use the values of parameters l ¼ 0:5; x1 ¼ 1;
x2 ¼ 1:3247; and x3 ¼ 1:75483. Equation (8) has been

solved by the Runge-Kutta method, and the time series of

xk; _xk were used to calculate the protophases as hk

¼ �arctanð _xk; xkÞ.

A. Test examples

Before discussing different types of networks, we pres-

ent a detailed analysis of two particular cases in order to

exemplify the appearing statistical and systematic errors.

Our second goal is to demonstrate numerically the difference

between the structural and the effective connectivities.

We begin by testing the model (8) with unidirectional

pairwise couplings, setting r12 ¼ r23 ¼ r31 ¼ 1 while r13 ¼
r21 ¼ r32 ¼ g ¼ 0, cf. Fig. 3(a). First, we analyze statistical

effects of the number of data points used for the analysis. To

this end, we fix e ¼ 0:1 and vary the length M of the data set.

The data points are sampled with the time step 0.05. The

results for the partial norms of the reconstructed coupling,

presented in Fig. 1(a), demonstrate that there is almost no

statistical spreading.

In another test (Fig. 1(b)), we fix the data set size

M ¼ 106 and reconstruct the norms of the coupling terms in

dependence on the coupling parameter e. One can see that

while the couplings existing in model (8) scale as �e, the

other coupling terms, including the cross-coupling, scale as

�e2. This confirms the qualitative consideration in Sec. II

above, where we discussed the difference between the struc-

tural and the effective connectivities. There we argued, that

in addition to the terms which appear in the first-order

approximation of the phase dynamics and which correspond

to the links, existing in the original system, new terms appear

in the second and higher orders. Unfortunately, the differen-

tiation between these high-order terms and spurious terms

due to a possible systematic bias of the method (cf. Fig. 2

below) is not possible unless the theoretical phase descrip-

tion which includes high-order terms is available.

Next, we consider a configuration, where oscillator 2

drives unidirectionally oscillators 1 and 3, cf. Fig. 3(e).

FIG. 1. (Color online) Three van der Pol oscillators in a ring configuration, cf. Fig. 3(a). (a) The partial norms of the pairwise (squares and circles) and cross-

couplings (triangles) versus the length M of the used data set. The couplings which exist in Eq. (8) are shown by squares, while the absent links are shown by

circles. For each value of M, we plot the results of 20 calculations of the norms for randomly chosen initializations of the system. For all values of M> 20000,

the results almost perfectly coincide (differences are of the order �10�6) so that the markers overlap; for M¼ 20000, some spreading (differences �10�4) can

be seen. (b) The partial norms of the coupling terms versus the coupling parameter e, for fixed data length M¼ 106. The green solid line has slope one while

the dashed brown line has slope two.
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Again, we first compute the partial norms of the coupling

terms for fixed e ¼ 0:1 and varied M and then for fixed

M ¼ 106 and varied e. The results for the partial norms of

the reconstructed coupling are given in Figs. 2(a) and 2(b),

respectively. For this configuration, it is obvious that there

should be only two nonzero terms, reflecting the pairwise

action 2! 1 and 2! 3. The results show that the separation

between the true and spurious terms remains good (at least 2

orders of magnitude) even for a relatively strong coupling.

Fig. 2(a) shows that the spurious terms are due to systematic

errors, as for the data sets with M> 106 their fluctuations are

very small. Mostly small (of order 10�11, close to round-off

errors) are the terms describing the dynamics of the non-

driven oscillator. False pairwise and cross-coupling terms

have norms �10�8 and 10�4, respectively. We partially at-

tribute the appearance of such terms to the small correlations

between the phases that appear due to couplings: e.g., as a

result of a correlation between u3 and u2, the dynamics of

u1 may be slightly better described when the values of u3

are included. While postponing a more detailed analysis of

the spurious terms to the future, we would like to emphasize

that these terms are almost two order of magnitude smaller

than the combinational coupling terms of Fig. 1(a), this

allows us to assume that the terms in Fig. 1(a) are true and

not spurious.

B. General networks of three oscillators

As demonstrated above, for a sufficiently large data set,

the reconstruction method yields phase couplings almost

without statistical errors. It reproduces both the coupling

terms which exist in the original Eq. (1), as well as the addi-

tional terms appearing in the phase model (2). Here, we

present the results for different types of coupling of three

van der Pol oscillators (8). The data sets consisted of 106

points sampled with 0.01 time step. The analyzed coupling

configurations are schematically given in the left column of

Figs. 3 and 4. Note that we chose the oscillator frequencies

and parameters of coupling so that the network remains

asynchronous.

In the first set of tests, we considered only pairwise cou-

pling in Eq. (8), i.e., we took rkk ¼ 0. The results for

e ¼ 0:05 and e ¼ 0:15 are presented in the middle and right

columns of Figs. 3 and 4, respectively. The numerical values

of all reconstructed norms can be seen in the tables in the

middle column. Here, we show the coupling norms for the

pairwise coupling (6) as non-diagonal terms, and the triple-

phase coupling according to Eq. (7) as diagonal ones. The

coupling terms, which are present in the original system (8)

(i.e., those with rkl ¼ 1) are shown in boxes. We see that in

all cases, these terms are definitely larger than other entries

of the reconstructed coupling matrix, i.e., the reconstruction

works pretty well in all cases. Comparing the results for

smaller and larger coupling (Figs. 3 and 4, respectively), we

see that a larger coupling strength leads to an appearance of

cross-coupling terms for phases that are not present in the

original system (8).

In the right columns of Figs. 3 and 4, we show schemati-

cally the reconstructed coupling configurations. The corre-

sponding partial norms are coded by the width of arrows

which link the nodes. Only norms which are larger than 10%

of the maximal norm are shown here. This cut-off threshold

was chosen rather arbitrary in order to ensure clearness of

the visual representation of the results, given in the corre-

sponding tables; this choice is supported by the results of the

case study, presented in Figs. 1 and 2. We emphasize, that

due to the difference between structural and effective con-

nectivities and to the absence of a possibility to derive the

exact phase model theoretically, it appears hardly possible to

give a clear recipe for a separation between the existing and

the spurious couplings. One possibility would be an analysis

of coupling strength dependence of different terms, like in

Fig. 1, but for a given observation with some fixed coupling

strength this appears hardly possible.

FIG. 2. (Color online) Three van der Pol oscillators in a configuration, where oscillator 2 drives oscillators 1 and 3, cf. Fig. 3(e). The partial norms of the cou-

pling terms are plotted for fixed coupling strength e ¼ 0:1 vs the number of points M (a) and for fixed M ¼ 106 vs e (b). Squares correspond to truly existing

links. Triangles up represent all terms of the 2nd coupling function; these terms should be zero. Triangles down correspond to triple terms 2,3! 1 and 1,2!
3 and circles correspond to pairwise terms 1! 3 and 3! 1; these terms are spurious as well. It is seen that almost for the whole range of e, the true terms are

at least 103 times larger than spurious ones. The green solid line in (b) has slope one.
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In the second set of tests, we included the cross-couplings

by setting rkk ¼ 1 and g ¼ 0:1; the results are presented in

Fig. 5. Here, each configuration shown in Figs. 3(a)–3(h) was

complemented by the links according to Fig. 5(i). We see that

basically the coupling structure is correctly reproduced by the

method, although due to a joint action of different terms some

couplings, not presented in the original system (8), do not fall

below 10% of the largest norm.

Summarizing the results of this section, we conclude

that the connectivity of a weakly and pairwisely coupled net-

work can be correctly revealed. For stronger coupling, all

really existing in the original network links are correctly

revealed and some additional links appear. However, the lat-

ter are not necessarily spurious. Indeed, as discussed above,

not very weak pairwise coupling in the original network may

lead to additional connections in the network of phase oscil-

lators and to cross-coupling terms. Our results are in full

agreement with this argument.

V. CASE STUDY: NETWORKS OF FIVE AND NINE
OSCILLATORS

In this section, we report on the results for small net-

works of N ¼ 5 and N ¼ 9 coupled van der Pol oscillators.

We simulated the systems with pairwise interaction only,

€xk � lð1� x2
kÞ _xk þ x2

i xk ¼ e
X
l 6¼k

rklðxl cos akl þ _xl sin aklÞ:

(9)

As above, l ¼ 0:5, e is the intensity of coupling, and rkl is

the N�N connectivity matrix, i.e., rkl ¼ 1 if oscillator l acts

on oscillator k, and rkl ¼ 0 otherwise. An additional parame-

ter akl describes the phase shift in the coupling, so that gener-

ally the coupling can be either attracting or repelling.

We note that the computational efforts and the data

requirements for reconstruction of a network of N oscilla-

tors grow rapidly with N, so that full reconstruction for

FIG. 3. (Color online) True configurations in the

full model (8) (left column), to be compared with

the configurations of the reconstructed phase model.

Each panel in the middle column shows the partial

norms of the reconstructed coupling functions as a

table; the numbers in boxes correspond to truly

existing links and the numbers without the boxes

differ from zero either due to the difference between

structural and effective connectivities or due to nu-

merical artifacts. Schematic pictures in the right

column present the largest norms only (see text);

the values of the norms are coded by widths of link-

ing arrows. The arrows from the center to the first

oscillator (see panels (b), (f), and (h)) reflect the

joint action from oscillators 2 and 3 (cross-coupling

term) which cannot be decomposed into pairwise

actions 2! 1 and 3! 1. Coupling strengths in the

model are e ¼ 0:05 and g ¼ 0.
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N> 3, though theoretically possible, see Eqs. 4 and 5,

becomes practically unfeasible. Indeed, to reconstruct all

the possible coupling terms, one needs enough data points

to fill the N-dimensional cube 0 � uk < 2p. Our tests dem-

onstrate that one needs about 100N data points (cf. Fig. 2(a)

where for a reliable reconstruction for three oscillators

some 106 data points are needed). Additionally, the number

of terms to be reconstructed also grows as constN. Both

these factors result in a growth of CPU time by a factor

�1000 when the number of oscillators increases by one

(the computation time for N ¼ 3 is of the order of several

minutes on a workstation). On the other hand, in Sec. IV,

we have verified that weak pairwise couplings can be reli-

ably recovered. Therefore, for networks described by

Eq. (9), we reconstruct pairwise coupling functions only,

for all pairs of network units.

We performed a statistical analysis of the model (9): for

many randomly chosen values of frequencies xk, parameters

akl, and connectivity matrices rkl, we analyzed pairwise

interactions in the networks. For N ¼ 5, the frequencies xk

have been chosen uniformly distributed in (0.5,1.5), and the

number of incoming links for each node was 2, i.e.,P
l

rkl ¼ 2. The links have been chosen randomly; the

incoming and the outgoing links were chosen independently.

For N ¼ 9, the frequencies x were distributed uniformly in

(0.5,2.5), and the number of incoming links was 3. The in-

tensity of coupling in both cases was e ¼ 0:15, the phase

shift akl was distributed uniformly in (0,2p).

For each network, we computed N protophases accord-

ing to hk ¼ �arctanð _xk;xkxkÞ and then transformed them to

phases uk. Next, a synchronization analysis has been per-

formed: for all pairs, we calculated the synchronization

index jheiðuk�ulÞij. As our technique does not work in case of

synchrony, we excluded from the further consideration all

networks where the synchronization index was larger than

0.5 at least for one link.

FIG. 4. (Color online) Same as Fig. 3, but for

e ¼ 0:15. Again, an arrow from the center to, say,

first oscillator reflects the joint action from oscilla-

tors 2 and 3.
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For each obtained non-synchronous network, we fitted

the time derivatives _uk by
P

k 6¼l Fklðuk;ulÞ, where Fkl

depend on two phases only. Next, we computed the norms

N kl of all Fkl; these norms represent the reconstructed con-

nectivity of the network. Performing the analysis with a large

ensemble of non-synchronous networks, we separated N kl

into two classes: the first class contains those values of N kl

for which rkl ¼ 1, i.e., the connections between the nodes k,l
in the network (9) really exists. Otherwise, if rkl ¼ 0, the

value N kl belongs to the second class. The results are sum-

marized in Fig. 6. Ideally, one would expect that all norms in

the first class are much larger than those in the second class

(cf. Figs. 3 and 4). We see that there is a clear, although not

ideal, separation between the connected and the non-con-

nected links, what allows us to conclude that generally our

technique correctly reproduces the structural connectivity of

the network. This picture is in agreement with the results for

three coupled oscillators, where we never obtained small

norms for the true links, while sometimes large pairwise

links have been detected that not existed in the original equa-

tions. We expect that also for the regimes shown in Fig. 6,

the high values of the norms for absent original connections

are mainly not spurious but reflect the effective phase con-

nectivity. However, a more detailed statistical analysis of

these issues is needed before a “blind” application of the

method would be possible.

FIG. 5. (Color online) Same as Fig. 3, but for

combination of pairwise and triple-coupling,

e ¼ g ¼ 0:1. In the left column, an arrow from the

center to, say, first oscillator reflects the term �x2x3

with r11 ¼ 1 in Eq. (8), etc.
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VI. DISCUSSION AND CONCLUSION

In summary, we have presented a technique for the

reconstruction of the phase model of a network of coupled

limit cycle oscillators. From the reconstructed model, we

infer directional couplings of the network. We have tested

the technique on small networks of van der Pol oscillators

with pairwise and cross-coupling. We have shown that the

presence and direction of existing links can be reliably

revealed. However, as argued in Sec. II, the effective phase

connectivity generally differs from the structural connectiv-

ity: if matrix rkl determines the structural connectivity of the

original network model (1), then the phase model (2) for this

network would have an effective connectivity matrix Rkl

with a larger number of links and possibly with many cross-

couplings. It is this effective connectivity what is determined

in our approach, not the structural one. Therefore, our tech-

nique generally yields additional links which are absent in

the original network. These links are not spurious, but corre-

spond to the higher-order terms in the phase dynamics; they

become more pronounced with increase of the coupling. On

the other hand, some additional links may be artifacts of the

method (spurious links). The source of these artifacts

requires a further examination. In particular, in our approach

we completely ignored the variations of the amplitudes of

the reconstructed signals, what can be a source of errors.

Artifacts may appear also due to noise, closeness to syn-

chrony, etc., so that the differentiation between the truly

existing and the spurious links is not perfect. These effects,

as well as an analysis of other types of oscillators (including

noisy and chaotic ones) are currently under investigation.

Nevertheless, our approach allows us to distinguish between

the structural and effective connectivities, described by mat-

rices r, R and reflecting true interactions, and the functional

one. The term functional connectivity is typically used in the

context of the analysis of brain activity and is widely under-

stood as a correlated time behavior; it is quantified by differ-

ent measures of correlations or synchronization. The

functional connectivity results from the dynamics, and may

only loosely correspond to the structural and effective

ones.30,31

Finally, we discuss the perspectives of the analysis of

networks of many oscillators. As we have demonstrated,

generally a pairwise analysis yields good results only if

the connections are pairwise and weak. In the case of

cross-coupling (see e.g., Fig. 5(i)), pairwise analysis does

not help. Determination of applicability of the pairwise

analysis for a given network remains an open problem. A

possible solution might be a reconstruction of the phase

dynamics for several or all triplets of oscillators and com-

parison of the terms, dependent on three phases, with those

dependent only on two. If the triple terms are much

smaller in norm than pairwise ones, than the pairwise anal-

ysis may be sufficient.
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