

DAMOCO Toolbox

Brief illustration to the theory

Synchronization and its quantification

Michael Rosenblum

Bjoern Kralemann

Arkady Pikovsky

Institute of Physics and Astronomy Potsdam University, Germany

Synchronization

Synchronization is adjustment of rhythms of self-sustained oscillators due to their interaction. It is manifested via

- phase locking;
- frequency locking.

Two oscillatorsFrequency locking:2 $n\Omega_1 - m\Omega_2 = 0$ 1Phase locking: $|n\varphi_1 - m\varphi_2| < \text{const}$

Here *n*,*m* are positive integers

Phase and frequency locking: three oscillators

Frequency locking:

 $n\Omega_1 + m\Omega_2 + l\Omega_3 = 0$

Phase locking:

 $|n\varphi_1 + m\varphi_2 + l\varphi_3| < \text{const}$

Here *n,m,l* are integers which can be both positive and negative

For noisy systems the locking condition is fulfilled only approximately!

Phase and frequency locking: N oscillators

- For each pair we can test for phase locking from data
- For each triplet we can test for 3 pairwise locking conditions; if they are not fulfilled, we can test for triplet locking
- Locking conditions for *N*>3 can be formulated similarly; however such high-order locking is unlikely

Synchronization index

(also known as phase locking value)

- Pairwise index: $\gamma_{n,m} = \left| \langle e^{i(n\varphi_1 m\varphi_2)} \rangle \right|$
- Triplet index: $\gamma_{n,m,l} = \left| \langle e^{i(n\varphi_1 + m\varphi_2 + l\varphi_3)} \rangle \right|$
- Notice: generally, $0 \leq \gamma_{n,m} \leq 1, 0 \leq \gamma_{n,m,l} \leq 1$

Notice: generally, the index quantifies the interaction between the systems or correlation between the signals.