

Direction of coupling and its quantification

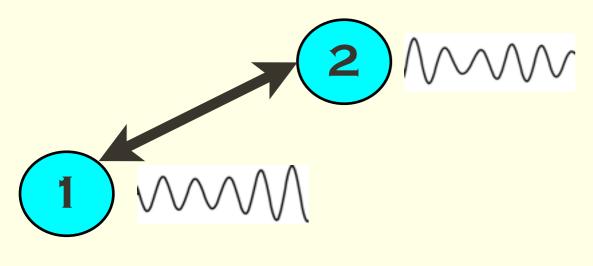
Michael Rosenblum

Bjoern Kralemann

Arkady Pikovsky

Institute of Physics and Astronomy Potsdam University, Germany

Two oscillators



Suppose we have reconstructed the model of phase dynamics

$$\dot{arphi}_1=\omega_1+q_1(arphi_1,arphi_2) \ \dot{arphi}_2=\omega_2+q_2(arphi_1,arphi_2)$$

Norm $||q_1||$ quantifies the strength of action $2 \rightarrow 1$

Relative measure $c_1 = \frac{||q_1||}{\omega_1}$, similarly $c_2 = \frac{||q_2||}{\omega_2}$ Directionality index $d = \frac{c_2 - c_1}{c_2 + c_1}$, $-1 \le d \le 1$ d = -1: second unit drives the first one d = 1: first unit drives the second one -1 < d < 1: bidirectional driving

Network of oscillators

Coupling functions in terms of Fourier coefficients:

$$rac{darphi_k}{dt} = \omega_k + q_k(arphi_1, arphi_2, \dots, arphi_N)$$

$$=\sum_{l_1,\ldots,l_N} \mathcal{F}_{l_1,\ldots,l_N}^{(k)} \exp\left(il_1\varphi_1 + il_2\varphi_2 + \ldots + l_N\varphi_N\right)$$

Norm of the coupling function q_k quantifies effect of the rest of the network on oscillator k

Action of particular oscillator j
ightarrow k

Partial norm
$$\mathcal{N}_{k\leftarrow j}^2 = \sum_{l_k, l_j \neq 0} \left| \mathcal{F}_{0,\ldots,l_k,0,\ldots,l_j,0,\ldots}^{(k)} \right|^2$$

Notice: generally $\mathcal{N}_{k \leftarrow j} \neq \mathcal{N}_{k \rightarrow j}$, hence it quantifies directional connectivity