
DAMOCO: MATLAB toolbox for multivariate data analysis,

based on coupled oscillators approach

Version 1.0

Björn Kralemann1, Michael Rosenblum2, Arkady Pikovsky2

1 Institut für Pädagogik, Christian-Albrechts-Universität zu Kiel
Olshausenstr. 75, 24118 Kiel, Germany

2 Institute of Physics and Astronomy, Potsdam University
Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

January 17, 2011

Abstract

This manual describes the collection of MATLAB programs for multivariate data analysis, based
on modeling the signal sources by coupled oscillators. The programs and the manual can be down-
loaded from www.agnld.uni-potsdam.de/~mros/damoco.html.

1 Introduction

DAMOCO means Data Analysis with Models Of Coupled Oscillators. This MATLAB toolbox is de-
signed to analyze multivariate data be means of the coupled oscillators approach [1, 2, 3, 4, 5]. The
functions presented here implement algorithms, developed in [3, 6, 7]. The main ideas and assumptions
of the approach are briefly summarized below.

• The object of our analysis are active oscillatory systems, i.e. self-sustained oscillators. In biology
such systems are called endogenous. Our approach works for noisy limit cycle oscillators or weakly
chaotic oscillators.

• We assume that signals we analyze are generated by such systems. This assumption is crucial for
the interpretation of results.

• The signals should be appropriate for phase estimation (i.e. they should be narrow-band signals)
or should be made appropriate by a corresponding preprocessing. We do not provide the functions
for preprocessing because it heavily depends on the particular application.

• The key issue of our approach is distinction between phases and protophases.

• According to the theory [8, 3], phase of an autonomous endogenous (self-sustained) oscillator grows
linearly with time:

φ̇ = ω0 , φ = ω0t+ φ0 ,

where ω0 is the natural frequency of the isolated system.

• In the practical data analysis phase is typically estimated via construction of a two-dimensional
embedding. The first coordinate in this embedding is the time series x(t) itself, while the second
one can be chosen in different ways. Often this second coordinate is the Hilbert transform xH(t) of

1

the original signal, or its time derivative ẋ, or the result of the complex wavelet transform. In case
of numerical simulation of an oscillating system, for the second coordinate of the embedding one
can choose any other coordinate of the dynamical system. The phase estimate, or protophase is
obtained as the angle in this embedding, i.e.

θ = arctan
(
xH − y0
x− x0

)
, or θ = arctan

(
ẋ− y0
x− x0

)
or. . . , (1)

where x0, y0 are coordinates of the point, taken for the origin. The crucial issue is that, generally,
a protophase θ obtained in this way, does not possess the property of the true phase and does not
grow linearly in time. Generally, the instantaneous frequency is a function of the phase itself:

θ̇ = ω0 + g(θ) .

It is important, that the oscillation of the frequency, described by g(θ) does not have any physical
meaning, but depends on the observable and embedding used, on the preprocessing, coordinates
x0, y0, etc.

• In order to obtain results, independent of the details of measurement and preprocessing, we trans-
form the protophases to true phases. This transformation has the form

dφ

dθ
= σ(θ) ,

where σ is the transformation function.

• True phases of two interacting oscillators obey the phase dynamics equations

φ̇1 = ω1 +Q(1)(φ1, φ2) ,

φ̇2 = ω2 +Q(2)(φ2, φ1) ,
(2)

where Q(1,2) are the coupling functions. The protophases obey equations

θ̇1 = ω̃1 + F (1)(θ1, θ2) ,

θ̇2 = ω̃2 + F (2)(θ2, θ1) ,
(3)

where the functions F (1,2), in contrast to functions Q(1,2), are non-universal. It means that F (1,2)

depend on the observables and the embedding used for their calculation. In particular, functions
F (1,2) typically strongly dependent on the own phase (i.e. F (1) strongly depends on θ1, see, e.g.
Fig. 2 in)example2.pdf, whereas this dependence does not reflect the true dynamics of the coupled
oscillators but rather the choice of protophases. Our analysis is based on the reconstruction of the
invariant functions Q(1,2). If these functions are known, then the interaction of oscillators can be
characterized in an invariant way. Note. In many cases the functions of the toolbox compute the
right hand side of Eqs. (2) or (3); therefore in the code the notations f,q often stay for ω + Q or
ω+F , especially in the intermediate computations. The final results provide separately frequencies
ω and coupling functions F,Q.

1.1 List of functions

If you do not want to go into details, you can simply use the function co_fbtransf1 for univariate
analysis or functions co_transf2, co_ittransf2 for bivariate analysis. If you want to optimize your
particular application, you may use the building blocks of the algorithms, which are implemented as
separate MATLAB functions.

All functions have a common name prefix co_, what stays for coupled oscillators. The current version
1.0 of the toolbox contains the following files

2

1. General purpose functions.

(a) co_testproto: Auxiliary function to test input data.

(b) co_hilbproto: Computation of instantaneous protophase from a scalar time series, using the
Hilbert transform.

(c) co_sync: Computation of the n : m synchronization index.

(d) co_maxsync: Maximal n : m synchronization index for a given range of n,m.

(e) co_dirin: Directionality index from norms of the coupling functions.

(f) co_dirpar: Directionality index from partial derivatives of the coupling functions.

2. Univariate transformation.

(a) co_fbtransf1: Fourier based univariate transformation from protophase to phase.

3. Bivariate transformation.

(a) co_fbtransf2: High-level function which performs two-dimensional protophase to phase trans-
formation and computes the coupling functions, frequencies, directionality index. Fourier-
based technique.

(b) co_ittransf2: High-level function which performs two-dimensional protophase to phase trans-
formation and computes the coupling functions, frequencies, directionality index. Iteration
technique.

(c) co_fexp2: Given two (proto)phases, the function yields two coupling functions via fitting a
Fourier series.

(d) co_fexp1: Similar to co_fexp1, but only one coupling function is computed.

(e) co_fbsolv: Using the output of co_fexp2, this function computes the bivariate protophase
to phase transformation functions σ1,2.

(f) co_fbth2phi: θ1,2 → φ1,2 transformation, using the output of co_fbsolv.

(g) co_fbnorm: Norm of the coupling function, given by its Fourier coefficients.

(h) co_itersolv: Using the output of co_fexp2, this function computes the bivariate transforma-
tion functions σ1,2 by iteration technique; it also returns frequencies, true coupling functions,
and their norms.

(i) co_gth2phi: Using the output of co_itersolv, this function performs the bivariate θ1,2 →
φ1,2 transformation.

4. Additional functions.

(a) co_plotcplf: Plot of the coupling function.

(b) co_plot2cplf: Plot of two coupling functions in the same window.

(c) co_plotcoef: Plot of the Fourier coefficients of the coupling function.

(d) co_plot2coef: Plot of the Fourier coefficients of two coupling functions in the same window.

(e) co_fbcfcor: Correlation between two coupling functions (Fourier-based).

(f) co_cfcor: Correlation of two coupling functions, given on a grid.

3

1.2 Conventions

The functions of the toolbox use the following conventions:

1. Input data are protophases computed in the [0, 2π] interval. Phases, computed via a transformation
are also by default not unwrapped, i.e. they are from 0 to 2π.

2. Protophases and phases are stored as column vectors.

3. If a function takes two (proto)phases as inputs, they should be column vectors of the same length.

4. The first argument of a coupling function is its own (proto)phase, i.e. the functions, stored as
matrices, are F (1)(φ1, φ2) and F (2)(φ2, φ1).

5. Many toolbox functions operate on a grid, e.g. co_fbtransf1 provides the transformation function
σ(θ) computed on a grid of size N (typically denoted as ngrid.) This means that θ takes the
discrete values

θi = 0,
2π

N − 1
, 2

2π
N − 1

, . . . , 2π , i = 1, . . . , N

and σ1 = σN due to periodicity.

6. Some functions optionally produce graphic output. These functions have input parameter fignum,
which should be zero or positive integer. If fignum=0, then no plot is produced, otherwise the
function opens a graphic window by command figure(fignum); and plot data in this window.

1.3 Using the toolbox

Using the toolbox is simple: (i) create an directory and put there all .m files; (ii) use the MATLAB
command pathtool to make this directory known to MATLAB; (iii) use the toolbox functions like any
other MATLAB function. So, e.g., type

>> help co_cplfct1

in the MATLAB command line to get help for the function co_cplfct1.m, or type

>> [phi,argsi,sigma]=co_fbtransf1(theta);
>> plot(argsi,sigma);

to transform the column vector of protophases theta into phases phi and to plot the transformation
function sigma.

2 Description of the toolbox functions

Here we give a brief description of the toolbox functions. The form of the call, description of input and
output parameters can be found in the function’s help.

2.1 General purpose functions

2.1.1 Test of input data

The input to most of the functions are time series of protophases. The function co_testproto checks
the input data for consistency and for accordance with the above formulated conventions. The input
parameters are one or two protophases. The function returns 1, if data are correct, and zero, if something
is wrong.

4

2.1.2 The Hilbert protophase

The function co_hilbproto computes the Hilbert protophase from a scalar time series. It allows to
adjust the origin by setting its coordinate x0, y0 (see Eq. 1). In order to eliminate the boundary effects
of the transformation, it cuts the parts of the signal at the beginning and at the end. It also gives a
warning if the phase is ill-defined.

2.1.3 Synchronization index

The function co_sync computes the n : m synchronization index, also known as the phase locking value:

γn,m = |〈ei(nθ1−mθ2)〉| ,

for given n,m.

2.1.4 Maximal synchronization index

The function co_maxsync computes max(γn,m) in a given range of n,m. It returns the matrix
gamman,m, the maximal value of the synchronization index and the corresponding values n and m.

2.1.5 Directionality index I

The function co_dirin computes the directionality index

d =
c2 − c1
c2 + c1

, (4)

where

c1,2 =
N (1,2)

ω1,2
. (5)

Here N (1,2) are norms of the coupling functions Q(1,2). Defined in this way, coefficients c1,2 provide an
observable-independent measure of directionality.

The directionality index varies from d = −1, if system 2 drives system 1, to d = 1, if the unidirectional
driving is in the other direction; the values −1 < d < 1 correspond to a bidirectional coupling.

2.1.6 Directionality index II

The function co_dirpar computes the directionality index according to [2], i.e. the coefficients in Eq. (4)
are obtained as

c21,2 =
1

4π2

∫ 2π

0

∫ 2π

0

(
∂q(1,2)

∂φ2,1

)2

dφ1dφ2 ,

2.2 Univariate analysis

2.2.1 Fourier-based θ → φ transformation

Univariate transformation θ → φ, based on the expansion of the probability density into Fourier series,
is performed by the function co_fbtransf1. For its implementation we re-write Eq. (16) from [7] in a
form, more convenient for computation:

φ = θ +
∑
n 6=0

Sn
in

(einθ − 1) = θ +
∞∑
n=1

[
Sn
in

(einθ − 1)− S−n
in

(e−inθ − 1)
]
.

5

Using S−n = S∗n we obtain

φ = θ + 2
∞∑
n=1

Re
[
Sn
in

(einθ − 1)
]

= θ + 2
∞∑
n=1

Im
[
Sn
n

(einθ − 1)
]
.

In addition, to what has been done in [7], Gaussian kernel smoothing is introduced:

φ = θ + 2
∞∑
n=1

Re
[
Sn
in

(einθ − 1)
]

= θ + 2
∞∑
n=1

e−n
2α2/2Im

[
Sn
n

(einθ − 1)
]
,

where α is the smoothing parameter.
The function optionally provides the transformation function σ, computed according to

σ =
dφ

dθ
= 1 + 2

∞∑
n=1

e−n
2α2/2Re

(
Sne

inθ
)

on a grid of size ngrid.

2.3 Bivariate analysis

The aim of this analysis is to transform simultaneously two protophases to true phases by means of the
transformation functions

σ1 =
dφ1

dθ1
, σ2 =

dφ2

dθ2
,

and to reconstruct Eqs. (3).
An important note is in order. While reconstructing the coupling functions, we obtain some constant

terms. Strictly speaking, these terms can differ from the natural frequencies ω1,2 of oscillators, because
the coupling functions generally contain a constant term ω̂1,2 and what is recovered by the analysis is
the sum ω1,2 + ω̂1,2. If we have only one observation of the coupled system, then we cannot separate
these constants. (It can be done if several observations of the system at different coupling strength are
available, see [7].) In the following we simply say “frequencies” and denote them as ω1,2 (omega1 and
omega2 in the code), although strictly speaking these are the sums ω1,2 + ω̃1,2.

If you do not want to go into details, you can simply use one of two high-level functions co_fbtransf2
and co_ittransf2. These functions consist of the building blocks, also described below; you can use these
blocks in order to optimize your particular application. Note that co_fbtransf2 uses the optimization
matlab toolbox; if your distribution does not contain this toolbox, use the function co_ittransf2.

2.3.1 High-level function which does everything, Fourier-based technique

The function co_fbtransf2 performs the whole analysis. Taking two protophases as the input, it per-
forms the transformation and returns frequencies ω1,2 and coupling functions Q(1,2), computed on a grid.
Furthermore, it returns the Fourier coefficients of the coupling functions, norms of these functions, true
phases φ1,2, and directionality index according to Eqs. (4,5). In order to perform the bivariate θ → φ
transformation, this function solves a nonlinear equation system (see Appendix in [7]).

2.3.2 High-level function which does everything, iteration technique

The function co_ittransf2 does the same as the previous one (it does not compute the Fourier coefficients
of coupling functions). The difference is that it uses iteration technique for the solution of the nonlinear
equation system (see Appendix in [7]).

6

2.3.3 Coupling functions for two oscillators: Fourier fit

This computation is performed by the functions co_fexp1 and co_fexp2. Given two (proto)phases the
first one provides the coupling function F (1)(θ1, θ2) by fitting a double Fourier series of the given order.
It corresponds to the algorithm, described in [7]. The second function computes both coupling functions
F (1)(θ1, θ2) and F (2)(θ2, θ1) simultaneously. The output are the Fourier coefficients of the function of
protophases F (1)(θ1, θ2) and F (2)(θ2, θ1). Optionally, the co_fexp1 and co_fexp2 compute F (1)(θ1, θ2)
and F (2)(θ2, θ1) on a grid.

Note that using co_fexp2 is faster than using co_fexp1 twice. Note also, that F (1)(θ1, θ2) and
F (2)(θ2, θ1) are not the true functions; the latter are obtained by the transformation

F (1)(θ1, θ2), F (2)(θ2, θ1)→ Q(1)(φ1, φ2), Q(2)(φ2, φ1) .

This transformation is performed by the functions, described below.

2.3.4 Functions for the Fourier-based technique

I. Function co_fbsolv solves the nonlinear equation system using the nonlinear equation solver of
MATLAB optimization toolbox and returns Fourier coefficients of the transformation functions sigma1
and sigma2. Optionally, it also returns the functions themselves, computed on a grid.

II. Function co_fbth2phi performs the θ1,2 → φ1,2 transformation, using the output of co_fbsolv.

III. Function co_fbnorm computes the norm of the coupling function, given in terms of its Fourier
coefficients. Function co_fbnorm works with the output of co_fexp2.

2.3.5 Functions for the iteration technique

I. Function co_itersolv solves the equation system by iterations and computes the bivariate θ1,2 →
φ1,2 transformation functions σ1,2. co_itersolv works with functions, computed on the grid; it uses the
output of co_fexp2. It also returns frequencies, true coupling functions, and their norms.

II. Function co_gth2phi performs the θ1,2 → φ1,2 transformation, using the output of co_itersolv.

2.4 Additional functions

2.4.1 Plotting functions

I. Function co_plotcplf plots the computed coupling function. Function co_plot2cplf plots two
coupling functions in the same graphic window.

II. Functions co_plotcoef and co_plot2coef plot color-coded Fourier coefficients of one or two cou-
pling functions, respectively.

2.4.2 Correlation of coupling functions

Toolbox functions co_fbcfcor and co_gcfcor compare two coupling functions, computing their corre-
lation. co_fbcfcor operates with Fourier coefficient, whereas co_gcfcor works with functions, given on
a grid.

7

3 Examples

The toolbox function are illustrated by several examples with artificially generated data. For each example
we provide the matlab code, the data file, and the pdf file with the output and comments. These files
can be downloaded from the toolbox web-page. More examples are coming in the nearest future.

3.1 Two coupled van der Pol oscillators

The model is

ẍ1 − µ(1− x2
1)ẋ1 + ω2

1x = ε1(ẋ2 − ẋ1) ,

ẍ2 − µ(1− x2
2)ẋ2 + ω2

2x = ε2(ẋ1 − ẋ2) ,
(6)

where the parameters are µ = 0.5, ω1 = 1.11, and ω2 = 0.89.
First two examples are implemented by the functions co_example1 and co_example2. For the input

these functions use the data file co_vdp2.mat. This data set corresponds to symmetrically coupled van der
Pol oscillators with ε1 = ε2 = zz. Functions co_example1 and co_example2 illustrate the Fourier-based
algorithm. The first example program co_example1 is based on the high-level function co_fbtransf2.
If you do not go into details, you may take this file and modify it to read your data. The second example
program co_example2 plots all intermediate results and illustrates the whole procedure step-by-step.
Note that you need matlab optimization toolbox to run these examples.

Third and forth examples are implemented by the functions co_example3 and co_example4. They
illustrate the iteration technique. Again, the first of these two is based on the high-level function
co_ittransf2, while the second performs and illustrates every step separately. These examples take
the data from co_vdp2uni.mat; this data set corresponds to unidirectionally coupled oscillators with
ε1 = zz and ε2 = zz. You can easily modify these files to read and process

References

[1] M. G. Rosenblum, A. S. Pikovsky, J. Kurths, C. Schäfer, and P. A. Tass. Phase synchronization: From
theory to data analysis. In F. Moss and S. Gielen, editors, Neuro-informatics and Neural Modeling,
volume 4 of Handbook of Biological Physics, pages 279–321. Elsevier, 2001.

[2] M. G. Rosenblum and A. S. Pikovsky. Detecting direction of coupling in interacting oscillators. Phys.
Rev. E, 64(10):045202, 2001.

[3] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization. A Universal Concept in Nonlinear
Sciences. Cambridge University Press, Cambridge, 2001.

[4] M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka. Identification of coupling
direction: Application to cardiorespiratory interaction. Phys. Rev. E, 65(4):041909, 2002.

[5] M. G. Rosenblum, L. Cimponeriu, and A. S. Pikovsky. Coupled oscillators approach in analysis of
bivariate data. In B. Schelter M. Winterhalder and J. Timmer, editors, Handbook of Time Series
Analysis, pages 159–180. Wiley-VCH, Weinheim, 2006.

[6] B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, and R. Mrowka. Uncovering interaction
of coupled oscillators from data. Phys. Rev. E, 76:055201, 2007.

[7] B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, and R. Mrowka. Phase dynamics of
coupled oscillators reconstructed from data. Phys. Rev. E, 77:066205, 2008.

[8] Y. Kuramoto. Chemical Oscillations, Waves and Turbulence. Springer, Berlin, 1984.

8

