DAMOCO: MATLAB toolbox for multivariate data analysis, based on coupled oscillators approach Example 3

January 16, 2011

1 Data and method

This example is implemented by the function co_example3; it uses the data file co_vdp2uni.mat. The data for this example are generated by a model of two unidirectionally coupled van der Pol oscillators:

$$\ddot{x}_1 - \mu(1 - x_1^2)\dot{x}_1 + \omega_1^2 x = \varepsilon_1(\dot{x}_2 - \dot{x}_1) ,$$

$$\ddot{x}_2 - \mu(1 - x_2^2)\dot{x}_2 + \omega_2^2 x = 0 .$$
(1)

Parameters are: $\mu = 0.5$, $\omega_1 = 1.11$, $\omega_2 = 0.89$, and $\varepsilon_1 = 0.1$.

In this example, we use the high-level function, which computes everything, using default parameters. Hier the iteration technique is used, see manual and related publications for details.

2 Output and comments

----- Starting co_example3 -----iteration 1: omega1=1.0541 omega2=0.8235
iteration 2: omega1=1.0541 omega2=0.8235
iteration 3: omega1=1.0541 omega2=0.8235
iteration 4: omega1=1.0541 omega2=0.8235
Synchronization index from phases 0.11247
Directionality index 0.99149
----- End of co_example3 ------

True coupling function after bivariate transformation

Note differente scales in the plots of coupling function. In fact, the 2nd coupling function is flat, as expected for the case of unidirectional