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A room is not heated by increasing its internal energy but by decreasing its entropy due to the fact
that during heating, the volume and pressure remain constant and air is expelled. We first present a
simple solution treating the air in the room as an ideal gas. We calculate the differential entropy
change and heat transfer and give numbers for a typical room including estimates of heat loss
through windows and walls. We also demonstrate the power of thermodynamics to derive the
entropy and internal energy changes for any gas. © 2011 American Association of Physics Teachers.
�DOI: 10.1119/1.3488987�
I. INTRODUCTION

In 1938, Emden1 published a short article with the title,
“Why do we have winter heating?”2 He starts by giving two
answers:

“The layman will answer: ‘To make the room
warmer.’ The student of thermodynamics will per-
haps express it thus: ‘To import the lacking �inter-
nal thermal� energy.’ If so, then the layman’s an-
swer is right, the scientist’s is wrong.”

Emden then proved his assertion with a simple argument
based solely on regarding air as an ideal gas. Sommerfeld
included this thermodynamic problem in his textbook on
thermodynamics.3 Many years later, it was briefly discussed
in two short communications.4,5 The lack of exposure and
interest in this problem is surprising, considering the impor-
tance of heating of dwellings in everyday life and how in-
structive this example is. Over the years, we have jokingly
asked many physicists Emden’s question, with the result that
embarrassingly few came up with the correct answer. We
have therefore decided to revisit this problem more formally
and also consider situations where the ideal gas law does not
hold. It is also fitting to pay tribute to Emden,1 an eminent
scientist and thermodynamicist who first raised the issue and
who pioneered the application of thermodynamics in atmo-
spheric science and astrophysics.

What happens when you “heat” a room to increase its
temperature? The quick answer is you turn on a heater, thus
increasing the internal energy and hence raising the tempera-
ture. Although this answer may apply to some rooms, it is
not so for rooms in which we live. We analyze this answer by
first paying careful attention to what is the system and what
are its enclosing walls before we proceed with a more real-
istic answer.

Energy transfer by heating a system will be used solely to
increase its internal energy only if its enclosing walls are
rigid �otherwise some of the energy transferred by heating
could be used to do work on the outside� and the walls are
impermeable �otherwise air will escape taking some of the
thermal energy with it�. Rooms with rigid and impermeable
walls exist, but hardly qualify as living rooms for obvious
reasons.

The thermodynamic system of interest consists of the air
in the room. The walls surrounding a room can be well char-

acterized as rigid because the thermal expansion of the walls
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is negligible so that the volume of the room is constant. We
will also assume that the walls are adiabatic. We will deal
with energy loss by conduction through walls and windows
later. The walls of a room are approximately impermeable
except for the doors and windows. Thus, overall the walls
must be treated as permeable so that air can escape and enter.
Permeability implies that the air pressure inside and outside
the room is the same and remains constant because anything
we do to the room will hardly affect the world outside. Thus,
our preliminary conclusion is that during the process of rais-
ing the temperature, the pressure and volume of the room
remain constant, and the amount of air in the room �mole
number� does not. These are the conditions for which we
must formulate the solution.

II. SIMPLE SOLUTION: IDEAL GAS

For the conditions applicable to human habitation, we can
treat the air as an ideal gas of n moles contained in a volume
V at pressure P so that PV=nRT. With P and V both con-
stant, the internal energy U=ncVT=cVPV /R remains con-
stant, where cV is the molar specific heat at constant volume.
Thus, raising the temperature of the room can only be done
by expelling air: T goes up and n=U / �cVT� goes down to
keep U constant. Of the relevant extensive variables, the in-
ternal energy U, volume V, mole number n, and entropy S
=S�U ,V ,n�, the only remaining thermodynamic property
that can also change is the entropy. Because the entropy for
an ideal gas is known �see, for example, Refs. 6 and 7�, we
could calculate its change directly at fixed U and fixed P.
However, it is a better thermodynamic practice to start from
differential changes. To simplify the calculation of the
change of entropy, we fix V and U rather than P
=UR / �cVV�. Thus, we need to know
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Equation �1b� follows from the mechanical equation of
state of the ideal gas and the fundamental relation in the
entropy representation

dS = �1/T�dU + �P/T�dV + �− �/T�dn �2�
so that
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The chemical potential of an ideal classical gas of molecules
at room temperature is negative and is given by

exp��/RT� = NA
P

RT
�th

3 Zint
−1, �4�

where NA is Avogadro’s number, �th=h / �2�mkBT�1/2 is the
thermal wavelength of the gas particles with average mass m,
and Zint is the molecular partition function for the vibrational
and rotational degrees of freedom of the air molecules �see,
for example, Ref. 7 or Ref. 8�. The result is that as the tem-
perature is raised in the room, the entropy decreases. Thus,
the heat transfer, dQ=TdS, is also negative, that is, we do
transfer energy to the outside to “heat” a room. The decrease
in entropy, with an increase of temperature, can only occur if
the quantity of air in the fixed volume decreases, that is, air
must be expelled to the outside.

We can integrate Eq. �1b� to obtain the entropy change and
also the energy transfer needed to raise the temperature of
the air from Ti to Tf,
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Here, cP=cV+R is the specific heat at constant pressure �cP

=3.48R for dry air, that is, there is a contribution of 1
2R to cV

for each of three translational degrees of freedom and two
rotations, but vibrations are not excited at room tempera-
ture�.

To obtain a sense for the magnitude of these changes,
consider a 4 m�5 m�2.5 m room with volume V
=50 m3 and atmospheric pressure whose temperature is
raised from Ti=273 K to Tf =300 K. We have to expel ther-
mal energy −Q�10 MJ or 2.8 kW h, provided we make the
room completely air tight and thermally insulated as soon as
the final temperature is reached. From the equation of state
we have that nfTf =niTi so that in this heating process about
10% of the air has been expelled. The entropy change is
�S�−26 kJ /K. To put this number into perspective, we
note that the magnitude of this entropy change is about the
same as that occurs by heating and transforming four liters of
water completely into vapor at 1 atm pressure, for which
about 9 MJ is required ��S and Q positive�.

As Sommerfeld and others have discussed,4,5 although the
internal energy remains constant, the molar internal energy

u=U /n increases by
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uf − ui
 = cV�Tf − Ti� . �7�

Because the internal energy in an ideal gas is purely kinetic,
this increase implies that at higher temperature the kinetic
energy of the gas molecules is higher.

In addition to raising the temperature in a room, we also
have to raise the temperature in the walls. For a thickness of
about 1 cm, the total volume of gypsum plasterboard �com-
mon in a standard North American home� covering the walls
�density of about 600 kg /m3� is about 1 m3, which contains
about n=3400 mol of calcium sulfate dihydrate. The spe-
cific heat of plasterboard is about9 1090 J kg−1 K−1. Thus,
the energy transfer needed to raise the temperature of the
plasterboard by the same amount �27 K� is QPB=ncV�Tf

−Ti��0.31 kW h, or about 1/10 of the heat transfer needed
to raise the temperature of the air itself. In addition, we
should keep in mind that there is energy loss by conduction
and by convection through cracks and doors. To be specific,
the rate of heat loss as measured by the U-factor �the inverse
of the R-value� is 0.5 W K−1 m−2 for a stud wall with R-20
fiberglass insulation, 6.25 W K−1 m−2 for a single-glazed
window, and 2.8 W K−1 m−2 for a double-glazed window.
Thus, for a 2.5 m�5 m outside wall with a 2 m2 double-
glazed window and a temperature difference of 20 K be-
tween the inside of the house and the outside we must supply
about 240 W, or 6 kW h/day to compensate for the heat loss
through conduction, provided there are no thermal leaks by
convection.

III. GENERAL SOLUTION

What happens at higher pressure and higher densities
when the ideal gas approximation is not applicable? Like-
wise, what happens when we want to superheat steam? In
such situations, the simplification that constant pressure and
volume implies constant internal energy and volume cannot
be used. A student of thermodynamics must learn to treat
such problems in a systematic way without resorting to sim-
plifying “tricks” as used in many books. Here, we follow the
procedure outlined in Ref. 6, Chap. 7.3. The procedure is a
good exercise in thermodynamic thinking and rigor.

We need the entropy change for a given temperature
change at constant pressure and volume,
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The numerator is the thermal expansion coefficient � at con-
stant pressure up to a factor of V,
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For the denominator, we have the Maxwell relation
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The last equality results from the fact that, for constant T, the

Gibbs–Duhem equation

75H. J. Kreuzer and S. H. Payne



d� = −
S

n
dT +

V

n
dP �12�

reduces to d�= �V /n�dP. We thus obtain
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We turn next to the first factor in Eq. �8� and write
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to obtain the quantities that are specified to be the natural
variables of the internal energy, U=U�S ,V ,n�. We thus ob-
tain a useful Maxwell relation for the numerator
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where we again used Eq. �12�. For the denominator in Eq.
�14�, we have another Maxwell relation
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Hence, we obtain for Eq. �8�,
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where s=S /n is the molar entropy. If we express the Euler
relation for molar quantities, s=u /T+ Pv /T−� /T, we can
easily show that this general result agrees with Eq. �1b� for
an ideal gas. The quantities s, �, and cP are well defined
functions of temperature and pressure and are tabulated for
many gases of interest.

What happens to the internal energy under conditions
when P and V are held constant? We obtain

dU = � �U

�T
�

P,V
dT = − n��h −

cP

�
�dT , �21�

where h=u+ Pv is the molar enthalpy. For an ideal gas,
Eq. �21� reduces to dU=0 as required. If we use the defini-

tions of � and cP, we can rewrite Eq. �20� as

76 Am. J. Phys., Vol. 79, No. 1, January 2011
dS = ns� 1

V
� �V

�T
�

P,n
−

1

S
� �S

�T
�

P,n
	dT , �22�

which is the difference between the relative volume and
entropy changes with temperature. Likewise, we obtain for
Eq. �21�,
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To see how the nonideality of the gas affects the heating
process, we need to integrate Eqs. �20� and �23� for a par-
ticular gas, which can be done numerically, for example, for
water vapor using steam tables. However, a qualitative argu-
ment can be given that suggests no great surprises. We note
that switching on interactions between the gas particles will
decrease the expansion coefficient relative to an ideal gas
because attractive forces will hinder expansion. Likewise,
the entropy will decrease because attractive forces will result
in short-ranged correlations. Hence, we expect that the term
in brackets in Eq. �22� will remain negative. For water vapor
at atmospheric pressure and 100 °C, the change ��s /�T�P is
−0.034R compared with the value for an ideal gas of
−0.059R. The effect of saturated water vapor
�P=0.01 atm� at room temperature upon heating a room re-
duces the entropy loss marginally because the fraction of
water vapor is only a few percent. A similar argument for the
change in internal energy in Eq. �21� shows that it is margin-
ally negative because the expelled air takes some of the in-
ternal energy with it, due to the attractive interactions be-
tween the mloecules.10

IV. DISCUSSION

We have argued that to raise the temperature of a room
with permeable walls, the relevant thermodynamic process
has both volume and pressure constant. If we treat the air in
the room as ideal �which is a very good approximation�, its
internal energy U=ncVT= �cV /R�PV remains constant, im-
plying that raising the temperature is accompanied by expel-
ling air to the outside and lowering the entropy. Thus, the
thermal energy that is transferred to the room is also trans-
ferred to the outside where it is wasted. Converse statements
apply if the room is cooled.

A skeptical reader might not be convinced and still believe
that there may be an alternate scenario. Let us analyze two
such possibilities. Because our analysis is based on the fact
that the walls of the room are permeable �the windows and
doors� so that air can escape, we now remove this assump-
tion and investigate a hermetically sealed room.

For a sealed room, n is constant, and we have two options,
either the volume of the room stays fixed as the temperature
is raised or the pressure remains constant. For constant vol-
ume, the pressure will rise according to

dP = � �P

�T
�

V,n
dT = −

��V/�T�P,n

��V/�P�T,n
dT =

�

�T
dT . �24�

We treat the air as an ideal gas. Increasing its temperature at
constant volume from Ti=273 K to Tf =300 K will raise the
pressure from Pi=1 atm=101.3 kPa to Pf = �Tf /Ti�Pi

=1.1 atm.11 This increase might cause some health problems
not to mention that large windows might explode. No work
is done and the thermal energy transferred to the room is

Qi→f =Uf −Ui= �cV /R�V�Pf − Pi��0.35 kW h.
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For constant pressure, the volume will increase to Vf
= �Tf /Ti�Vi, again a 10% increase, causing an unacceptable
bulge in the windows and walls of the room. In this case,
work is also done to move the walls �if that is possible�,
namely, Wi→f =−P�Vf −Vi��−0.14 kW h accompanied
by a heat transfer Qi→f =�U−Wi→f = �cP /R�P�Vf −Vi�
�0.48 kW h.

It is the entropy that plays the dominant role in thermody-
namics, which sets it apart from mechanics. To emphasize
this point, we finish with another quote from the conclusions
of Emden’s article:2

“As a student, I read with advantage a small book
by F. Wald entitled ‘The Mistress of the World and
her Shadow.’ These meant energy and entropy. In
the course of advancing knowledge the two seem
to me to have exchanged places. In the huge manu-
factory of natural processes, the principle of en-
tropy occupies the position of manager, for it dic-
tates the manner and method of the whole
business, whilst the principle of energy merely
does the book-keeping, balancing credits and
debits.”
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