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Abstract

We study the phase dynamics of a chain of autonomous, self-sustained, dispersively coupled oscillators. In the quasicontinuum limit the basic
discrete model reduces to a Korteveg–de Vries-like equation, but with a nonlinear dispersion. The system supports compactons – solitary waves
with a compact support – and kovatons – compact formations of glued together kink–antikink pairs that propagate with a unique speed, but may
assume an arbitrary width. We demonstrate that lattice solitary waves, though not exactly compact, have tails which decay at a superexponential
rate. They are robust and collide nearly elastically and together with wave sources are the building blocks of the dynamics that emerges from
typical initial conditions. In finite lattices, after a long time, the dynamics becomes chaotic. Numerical studies of the complex Ginzburg–Landau
lattice show that the non-dispersive coupling causes a damping and deceleration, or growth and acceleration, of compactons. A simple perturbation
method is applied to study these effects.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The subject matter of this paper unifies two principal
fields of nonlinear science: coupled self-sustained oscillators
and soliton theory. Coupled autonomous oscillators have
been a subject of interest since the discovery of their
synchronization by Huygens [1]. A theoretical understanding
of this phenomenon is almost one hundred years old [2]; since
then different features of coupled oscillators have attracted
considerable attention (see, e.g., [3,4]). When the coupling of
periodic self-sustained oscillators is weak it can be described
in the phase approximation [5], where only a variation of
oscillator phases enters into play. For two coupled oscillators
this leads to an Adler-type equation [6]. The corresponding
phase models are widely used for a description of oscillator
lattices [7–11] and globally coupled ensembles [5,12–15].

The phase approximation for coupled oscillators requires
the coupling strength to be small compared to the smallest,
in the absolute sense, negative Lyapunov exponent. One may
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then consider the ‘amplitude’ perturbations as slaved entities.
In the absence of coupling the resulting phase equations have
only zero Lyapunov exponents, therefore the dissipative or
conservative nature of the phase dynamics will solely depend
on the particulars of the coupling. In studies which focus
on synchronization properties of oscillators, it is natural to
assume that the coupling is dissipative which thus tends to
equalize the phases. Adequately strong coupling then leads
to a synchronous state with a uniform phase of a lattice or
a network, if the coupling is attractive, or to an anti-phase
lattice, if the coupling is repulsive. Notably, certain types of
coupling lead to a conservative dynamics. A prominent example
being that of a splay state in a globally coupled ensemble of
oscillators [16–20].

In contradistinction to previous studies, in the present work
we consider the dynamics of a one-dimensional lattice, a chain,
of oscillators with a dispersive coupling. A multicore fiber
laser [21], where individual self-oscillating lasers are arranged
in a ring, may be a realization of such a lattice. Another
physical example, an array of Josephson junctions, will be
discussed below. Since both the local phase dynamics and
the coupling are non-dissipative, such a system shares many
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properties with Hamiltonian lattices, in particular the phase
volume is conserved. This means that if stable synchronized
states are admissible, they are not attractors, and the dynamics
is expected to be similar to that of the well-known Hamiltonian
examples, like the sine-Gordon lattice, for which the basic
building blocks are traveling solitary waves like pulses or kinks,
that on integrable lattices collide elastically (see, e.g., [22,23]),
while in non-integrable cases eventually give way to chaos.

In recent years two new concepts have significantly enlarged
our understanding of nonlinear processes in Hamiltonian
lattices and fields. One concept introduces localized periodic
breathers in lattices [24]. The other introduces excitations
in genuinely nonlinear lattices and wave equations. Unlike
the usual solitons that have exponential, or algebraic, tails,
the corresponding traveling waves have compact or almost
compact support. These waves, the compactons, have been
introduced by one of us [25,26] and put forward in [27–
35]. Typically, compacton-bearing PDE equations (or spatially
discrete equations on a lattice) are non-integrable, at least
in the conventional sense, yet their remarkable robustness
seems to have very little to do with the conventional
solitonic integrability and appears to originate in the nonlinear
mechanism which induces their compactness. Many of the
underlying equations of motion do not have an energy integral
and some may, under certain conditions, generate exploding
solutions. Nevertheless, typical numerical simulations show
that an initial perturbation of a finite span decomposes into
a set of compactons. As an example we mention a recent
modeling of DNA opening with one-dimensional Hamiltonian
lattices [36]. Other examples include a compression wave in a
granular chain [37–41] and sedimentation of particles in dilute
suspensions [42].

In the present paper we study compactons in a chain
of dispersively coupled nonlinear self-sustained oscillators (a
short report was presented in [43]). In Section 2 we derive
the basic model of dispersively coupled phase equations. In
particular, we show that such a model emerges naturally in a
chain of Ginzburg–Landau oscillators. Some general features
of our model are presented in Section 3 where we derive
in the quasicontinuum approximation a genuinely nonlinear
PDE to describe the dynamics on a lattice which for small
amplitudes reduces to the K(2, 2)-model for compactons [26].
In Section 4 we present the solitary solutions of the derived
PDE and show that there are two types of compact waves:
the usual compactons (solitary waves with a compact support)
and kovatons (flat-top compactons or glued compact kinks).
The corresponding solitary traveling solutions on the lattice
are found numerically using an iterative algorithm due to
Petviashvili. We show that the exactly compact front is replaced
with a superexponential tail where the discrete effects are
essential. This effect is confined to a very thin boundary layer
which shrinks to a singular point in the quasicontinuum limit.
In Section 5 we present numerical simulations of the dynamics
on the lattice: evolution of an initial pulse, collisions of
compactons and kovatons and other types of waves. In Section 6
we consider finite lattices and demonstrate the emergence of
a spatio-temporal chaos of Hamiltonian type. In Section 7 we
step beyond the phase approximation and show that compactons
and kovatons can be also observed in the Ginzburg–Landau
lattice. Here, however, additional small dissipative terms arise
and lead to the decay, or growth, of compactons; these effects
are addressed using a perturbation method.

2. The basic model

2.1. Phase lattice and variety of couplings

An autonomous periodic self-sustained oscillator with
frequency ω can be characterized by the phase ϕ that obeys
dϕ
dt = ω. An equation for weakly coupled oscillators may
be derived in two steps (see [4,5] for details). First, one uses
a smallness of the coupling compared to the smallest, in the
absolute sense, negative Lyapunov exponent of the oscillator.
This allows us to write equations for the phase evolution on
a perturbed limit cycle. For the lattice of identical oscillators
these equations read

dϕn

dt
= ω + q̃(ϕn−1, ϕn)+ q̃(ϕn+1, ϕn). (1)

Here q̃ is a coupling function 2π -periodic in each argument. In
the second step the smallness of the coupling compared to the
frequency ω is used to average the r.h.s. of (1). Then only the
‘slow’ part of q̃ remains and is a function of phase differences:

dϕn

dt
= ω + q(ϕn−1 − ϕn)+ q(ϕn+1 − ϕn), (2)

where q(ϕ + 2π) = q(ϕ). Introducing new variables

vn = ϕn+1 − ϕn, (3)

we rewrite the phase equations as

dvn

dt
= q(−vn)+ q(vn+1)− q(−vn−1)− q(vn). (4)

Since the frequency does not appear in (4), rescaling the time
we may consider the coupling function q to be of order one.

Since in general any function q can be represented as a sum
of its odd and even parts, we write q as q(v) = qo(v) + qe(v)

to obtain

dvn

dt
= qe(vn+1)− qe(vn−1)+ qo(vn+1)

+ qo(vn−1)− 2qo(vn)

= ∇dqe(v)+ ∆dqo(v), (5)

where ∆d and ∇d are the discrete Laplacian and nabla
operators, respectively:

∆d f = fn+1 + fn−1 − 2 fn, ∇d f = fn+1 − fn−1. (6)

Typical and probably the simplest choice for the coupling is
q(ϕ) = sinϕ. This odd coupling is dissipative and leads to the
system v̇n = ∆d sin(v) that has the synchronous state vn = 0
as an attractor. We, on the other hand, shall restrict our attention
to a purely even coupling function, yielding

dvn

dt
= q(vn+1)− q(vn−1) = ∇dq(v) (7)
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Fig. 1. An array of resistively coupled Josephson junctions.

(hereafter we shall for brevity omit the index e). This coupling
may be considered as the dispersive one, because Eq. (7)
conserves the phase volume and thus has no attractors and in
the quasicontinuum limit (see Section 3 below) it induces a
dispersive effect. Hereafter we shall almost exclusively limit
our analysis to the particular case q(v) = cos v (which
also seems to be the simplest one as it naturally emerges
in applications, but it is not generic because it has certain
additional symmetries) and thus:

dvn

dt
= cos vn+1 − cos vn−1 = ∇d cos v. (8)

2.2. An example: Complex Ginzburg–Landau lattice

As an example we consider a complex Ginzburg–Landau
lattice (it will be considered in a greater detail in Section 7)

dAk

dt
= Ak(1 − (1 + ic1)|Ak |

2)+ (c2 + ic3)

× (Ak−1 + Ak+1 − 2Ak). (9)

Note that Eq. (9), for complex amplitudes of oscillations A, are
already written in the rotating (with the oscillation frequency)
frame of reference and need not be averaged, but still have to
be reduced into a single equation for the phase. To this end we
assume the coupling coefficients c2 and c3 to be small compared
with the Lyapunov exponent on the limit cycle, which in our
case is −2. Then to a leading order in c2, c3, |An| = 1. The
reduction to the phase equation, carried out in the Appendix,
yields in this order

v̇k = (c3 − c1c2)∇d cos vk + (c2 + c1c3)∆d sin vk . (10)

Thus the dispersive coupling is proportional to c3 − c1c2
while the odd term representing the dissipative coupling is
proportional to c2 + c1c3. As we shall see in Section 7, in the
next order in c2 and c3 more complex dissipative corrections of
(10) emerge.

2.3. An array of Josephson junctions

As an example of a concrete physical setup we consider
a one-dimensional array of resistively coupled Josephson
junctions (see Fig. 1), fed by a dc current I .

Each junction is characterized by the Josephson phase ψn ,
and the balance of currents gives the governing equations

I =
h̄

2eR
ψ̇n + Ic sinψn +

1
r
(Vn − Vn−1 + Vn − Vn+1)

=
h̄

2eR
ψ̇n + Ic sinψn +

h̄

2er
(2ψ̇n − ψ̇n+1 − ψ̇n−1),
where the voltages are Vn =
h̄
2e ψ̇n and the Josephson currents

are Ic sinψn (the same system describes an array of coupled
overdamped pendula).

Following Ref. [44] we introduce a uniformly rotating phase

φ via tan φ
2 =

√
I−Ic
I+Ic

tan(ψ2 +
π
4 ) and using the identity

(I − Ic sinψ)(I − Ic cosφ) = I 2
− I 2

c obtain

φ̇n = ω0 +
R

r

(
φ̇n+1

I − Ic cosφn

I − Ic cosφn+1

+ φ̇n−1
I − Ic cosφn

I − Ic cosφn−1
− 2φ̇n+1

)
,

where ω0 =
2eR

h̄

√
I 2 − I 2

c is the frequency of non-coupled
junctions, assumed to be large. Now we assume that the
coupling parameter R/r is small, write φ = ω0t + θ , and to
the first order in the coupling strength obtain

θ̇n = ω0
R

r

(
I − Ic cos(ω0t + θn)

I − Ic cos(ω0t + θn+1)

+
I − Ic cos(ω0t + θn)

I − Ic cos(ω0t + θn−1)
− 2

)
.

The averaging over the period of fast oscillations 2π/ω0 finally
yields the equation (2) with the cos coupling function

dθn

dt
= ω0

R

r

(
I −

√
I 2 − I 2

c√
I 2 − I 2

c

)
× [cos(θn+1 − θn)+ cos(θn−1 − θn)− 2].

3. General properties of the basic model

We now discuss the basic properties of our model (7). An
infinite lattice is assumed. The effect of boundaries will be
discussed in Section 6.

3.1. Conservation laws and symmetries

We note first that since the divergence ∂v̇n
∂vn

vanishes, our
system is Liouvillean. Next, one easily verifies the following
conservation laws:

I1 =

∑
n
vn, (11)

I2 =

∑
n
(−1)nvn, (12)

I3 =

∑
n

Q(vn), where Q(v) =

∫ v

0
q(u)du. (13)

These conservation laws are valid on an infinite lattice. Finite
lattices are discussed in Section 6 where based on numerics we
argue that no additional conservation laws are available.

In addition to the a priori assumed parity q(v) = q(−v),
system (7) is reversible (for a discussion of reversibility in
chains of oscillators see [11]). This means that there exists an
involution R : V → V which, together with the time reversal
map T : t → −t , leaves the system invariant. (Involution
means that R2

= I = is an identity, and V is the set of
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variables.) In the case of system (7) two possible involutions
lead to reversibility

R1 : vn → v−n and R2 : vn → −vn . (14)

Moreover, system (7) remains invariant under the involution

R3 = R1R2 : vn → −v−n . (15)

Additional symmetries of the coupling function q(v)may result
in corresponding symmetries of (7). In particular, since q(v) =

cos v implies q(π + v) = −q(v), in this case (7) is invariant
under the involution

R4 : vn → π + v−n . (16)

3.2. A small-amplitude regime

Any constant vn = V is a solution of (7). For a small
perturbation ṽn = vn − V we have

dṽn

dt
= q ′(V )(ṽn+1 − ṽn−1). (17)

If q ′(V ) vanishes, there is no evolution in the linear
approximation and one has to consider nonlinear contributions.
In particular, for an even 2π -periodic function q ′(0) = q ′(π) =

0, thus the perturbations of the homogeneous states V = 0
and V = π essentially evolve nonlinearly. In the simplest case
wherein the extrema of q(u) are quadratic, say q(u) = cos u,
instead of (17) we obtain

dṽn

dt
= −

1
2
(ṽ2

n+1 − ṽ2
n−1). (18)

Eq. (18) is invariant under a scaling transformation

ṽ → aṽ, t →
t

a
, (19)

which implies that low amplitude structures evolve very slowly.
This effect will come into play in Section 5.

Remarkably, Eq. (18) admits a special analytic solution of
the form ṽn = A(t) sin 2πn

3 . Indeed, using this form in (18)
yields

dA

dt
sin

2πn

3
=

A2

2

(
sin2 2π(n − 1)

3
− sin2 2π(n + 1)

3

)
=
√

3/16A2 sin
2πn

3
.

Thus this particular mode does not induce harmonics or
subharmonics and its amplitude evolves according to

dA

dt
=
√

3/16A2,

yielding an explosive solution

A(t) =
A0

1 −
√

3/16A0 · (t − t0)
.

Thus a very small component can grow until the nonlinearity of
the full equation (7) slows it down. Note that this solution has
no continuous counterpart. The existence of such an ‘explosive
mode’ means that the trivial state vn = 0 in Eq. (7) is rather
sensitive to small perturbations. As we shall see, numerics
confirms such explosions.

3.3. The quasicontinuous approximation (QCA)

In a quasicontinuous approximation, denoting the spatial
step by h, we approximate the discrete operators (6) with spatial
derivatives:

∇d = 2h

[
∂

∂x
+

h2

6
∂3

∂x3

]
, ∆d = h2 ∂

2

∂x2 .

The resulting equation is

∂v

∂t
= 2h

[
∂

∂x
+

h2

6
∂3

∂x3

]
q(v). (20)

We stress that Eq. (20) is not an asymptotic version of the lattice
problem. Once the spatial length is normalized using the lattice
length, the small parameter is eliminated and higher order terms
are small to the extent that higher order gradients are small.
Clearly, at the edge of a compact entity this cannot be true
because the solution ceases to be analytical. Thus, depending
on the degree of smoothness at the edge (which depends on
the prevailing nonlinearity), starting with a certain derivative,
all higher gradients will not be small and may even diverge.
Thus no matter how good the continuum approximation may
be elsewhere, at the edge it cannot describe the lattice well.
Yet the issue is ‘miraculously’ resolved for, as we shall shortly
see, though on the lattice the compact edge is replaced by a
formally infinite tail, this tail decays at a super exponential
rate and thus after about three discrete nodes it is completely
negligible. Thus, the singularity of the continuum is a trace
of an extremely localized discrete boundary layer which, as
one approaches continuum, collapses into a singular manifold.
This phenomenon can be compared to the viscous kinetic
boundary layer in a gas which in the continuum, non-viscous,
limit is replaced by a shock jump. The respective solutions are
mathematically referred to as weak solutions. Since in our case
the solution is continuous and only the gradients undergo a
jump, our solutions could be viewed as weakly weak solutions.
In light of what we have just stated, it is indeed remarkable that
Eq. (20), embedded with only first correction in the discrete
parameter, approximates the original problem so well.

4. Traveling waves

4.1. Traveling waves in QCA: Compactons and kovatons

We now set h = 1 and consider the traveling wave solutions
of the quasicontinuum approximation (20):

∂v

∂t
=

(
2
∂

∂x
+

1
3
∂3

∂x3

)
q(v). (21)

We look for traveling waves v = v(s) = v(x −λt) on the trivial
background V = 0.
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Using the traveling wave ansatz in (21) and integrating once,
we obtain

λv + 2(q(v)− q(0))+
1
3

d2

ds2 q(v) = 0. (22)

The integration constant q(0) assures that the ‘effective force’
λv + 2(q(v)− q(0)) vanishes at v = 0. Note that if in addition
to v = 0 the derivative q ′(v) also vanishes at, say, v = v∗, then
v∗ is also a critical point of the system, and the ‘effective force’
has to vanish at this point as well. This may, as at v = 0, happen
without any additional constrain on the ‘effective force’, or may
have to be enforced via the choice of the only remaining free
parameter — the speed λ. In the second case the condition on
the ‘effective force’ invokes

λ = λ∗ ≡ 2
q(0)− q(v∗)

v∗
. (23)

We now multiply (22) with dq
ds and integrate again, to obtain

λ [vq(v)− Q(v))+ (q(v)− q(0)]2
+

1
6

(
dq

ds

)2

= 0 (24)

where Q is defined in (13) and the integration constant is chosen
to ensure that the ‘potential part’ vanishes at v = 0. We now
rewrite Eq. (24) as

(q ′)2

[
1
2

(
dv
ds

)2

+ U (v)

]
= 0, (25)

with the ‘potential’ U (v) being defined as

U (v) = 3
(q(0)− q(v))2 + λ[vq(v)− Q(v)]

(q ′(v))2
. (26)

Note that in spite of the apparent singularity at v = 0, the
potential U may in fact be non-singular there.1 Suppose that
for small v, q(v) ≈ q(0)+ avα . Thus

U (v) ≈ 3
(
α−2v2

+
λ

α(α + 1)a
v3−α

)
. (27)

Thus for α ≤ 3 the potential is bounded at v = 0. If the
additional singularity v∗ at which q ′(v∗) = 0 enters, a finiteness
of the potential leads to the condition on the speed λ:

λ∗∗ =
(q(0)− q(v∗))2

Q(v∗)− v∗q(v∗)
. (28)

Note that since in general λ∗∗ 6= λ∗, thus a solution with a
nonsingular potential both at v = 0 and v = v∗ is impossible.
However, if the relation

Q(v∗) ≡

∫ v∗

0
q(u)du =

q(0)+ q(v∗)

2
v∗ (29)

holds (see (23)), then λ∗∗ = λ∗. In particular, for q(v) = cos v
(29) holds and both critical speeds coincide! Note that the
presence of the integral makes condition (29) nonlocal.

1 The fact that the potential is infinite does not preclude the existence of
compactons. It implies, however, that the gradients at the edge will be infinite
(as is the case for K(4, 4) [26]).
For a typical even function q(v), one has α = 2 in (26). Then
for small amplitude solutions one can rewrite (25) as

v2

[
1
2

(
dv
ds

)2

+
λ

2a
v +

3
4
v2

]
= 0. (30)

The bracket expresses ‘conservation of energy’ for a motion
in a quadratic potential and admits harmonic solutions. A
symmetric solution with a minimum at v = 0 is

v(s) = −
λ

3a

(
1 + cos

√
3
2

s

)
= −

2λ
3a

cos2

(√
3
8

s

)
. (31)

The trough of this solution touches zero, where the trivial state
v = 0 is also a solution. Usually, one cannot match two
different solutions of an ODE. However, in our problem v = 0
is a singular point where the highest order operator degenerates
and the solution’s uniqueness is lost. We thus combine these
two solutions and obtain a composite solution — the compacton

v(s) =


−
λ

3a

(
1 + cos

√
3
2

s

)
if |s| ≤ π

√
2
3
,

0 if |s| > π

√
2
3
.

(32)

Note that the compacton’s amplitude is proportional to its
velocity λ. This is in full agreement with the scaling of solutions
for small amplitudes, see (19).

In a similar way we construct a compacton for the full
equation (25). In the particular case of q(v) = cos v, Q(v) =

sin v and Eq. (25) takes the form

sin2 v

[
1
2

(
dv
ds

)2

+ U (v)

]
= 0, (33)

with the potential being

U (v) = 3
(cos v − 1)2 + λ(v cos v − sin v)

sin2 v
. (34)

Eq. (33) has a singularity both at v = 0 and v = π . In
general, insofar as v < π , the maximal amplitude vm of the
compacton is found demanding that U (vm) = 0. This renders
the amplitude–velocity relation

λ =
(cos vm − 1)2

sin vm − vm cos vm
. (35)

If we intend to integrate up to v = π , the second singularity
of the system, we have to request that U (v = π) = 0 as well,
which in turn imposes a critical wave speed λ:

λc = λ∗∗ =
(cosπ − 1)2

sinπ − π cosπ
=

4
π
. (36)

This wave speed coincides with critical velocities defined
in (23) and (28). Since at λc the potential is symmetric
Uc(v) = Uc(π − v), the corresponding kink which connects
the singularities v = 0 and v = π is also symmetric. This
solution, as in (32), may be matched with the uniform states
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v = 0 and v = π and yields a compact traveling kink. Note
also that due to symmetry v → π − v, the kink connecting
the singularity at v = π with the one at v = 0 has the same
velocity. Thus it is possible to construct a solution consisting
of two kinks separated by an arbitrary finite width. Since the
resulting compact kink–antikink pair looks like a compacton
with a flat top, it has been named by us kovaton (from the
Hebrew ‘kova’ for a hat) in Ref. [43], and we shall continue
to refer to these flat-top compactons as kovatons. The explicit
form of a compacton and of a kovaton can be found numerically
either by solving Eq. (25) or solving directly the second-order
equation (22). This will be carried out in the next subsection.

4.2. Traveling waves on a lattice

We remind the reader that the discrete problem is the original
entity, with the continuum being used as an auxiliary tool. To
study discrete traveling waves, instead of a direct study of the
waveform, we position ourselves at a given point and follow
the time, which is a continuous variable, as the wave passes
the observer. To this end we make the traveling wave ansatz
vn(t) = v(t − bn) where b = 1/λ is the inverse velocity.
Positing it in (7) we obtain a delay-advanced equation

v̇ = q[v(t − b)] − q[v(t + b)]. (37)

Integration of (37) yields

v(t) =

∫ t+b

t−b
[q(0)− q(v(s))]ds. (38)

The choice of the integration constant ensures that v = 0 is a
solution.

Note that since Eqs. (37) and (38) have no singularities,
rather than to use constant state solutions v = v∗ where
q ′(v∗) = 0, we may attempt solutions with an arbitrary v∗. It
follows then from (38) that for such a solution to exist we need
that the corresponding speed satisfies

λ∗
= 2

q(0)− q(v∗)

v∗
. (39)

Remarkably, this condition is exactly analogous to condi-
tion (23) imposed in quasicontinuum for the force to vanish at
the singular point. To obtain an analog of condition (28) we
integrate (38) (assuming b =

1
λ∗∗ ) and obtain∫

∞

−∞

[
v(t)−

2
λ∗∗

{q(0)− q(v(t))}

]
dt = 0. (40)

However, this condition is not very practical as one has to
know the sought-after solution v(t). Nevertheless, when q is
symmetric q(v) + q(v∗

− v) = q(0) + q(v∗), assuming that
the solution is also symmetric: v(−t) + v(t) = v∗, then
for λ∗∗

= λ∗ the function to be integrated in (40) is odd
and the integral vanishes. Thus condition (40) is automatically
satisfied. In particular, this symmetry implies (29) and holds for
q(v) = cos v. Thus what in PDEs was accomplished directly
via symmetries and singularity, is also embedded in the discrete
antecedent albeit in a more implicit way. The present discussion
Fig. 2. Top panel: the form of the kink traveling wave. Bottom panel: the kink
in logarithmic scale. The function sin(v(t)) is plotted to reveal the approach
to asymptotic values both at v = 0 and v = π . Markers show the kink
on the discrete lattice. The dashed line is the corresponding solution in the
quasicontinuum approximation.

makes it also clear that a more general coupling function q
may lead to asymmetric solutions. This issue will be explored
elsewhere.

From now on we shall be concerned with the q(v) = cos v
case, where the homogeneous states of interest are v = 0 and
v∗

= π . The latter state, according to the preceding discussion,
is a solution for λ∗

= 4/π only. Notice also that λ∗
= λ∗ = λc.

To find the form of a kink connecting the two homogeneous
states we solve Eq. (38) for b = π/4 using a simple iterative
process that converges to the solution:

vk+1(t) =

∫ t+π/4

t−π/4
[1 − cos vk(x)]dx (41)

(k is the iteration step). We initially guess v0(x) and use a high-
order Lagrangian integration rule [45]. The resulting solution is
presented in Fig. 2.

To find the profile of the compacton we had to modify
the direct iterative process because a convergence to a trivial
solution may occur. A similar improved iterative method was
already proposed by Petviashvili [46,47]. We thus iterate

ṽ(t) =

∫ t+b

t−b
(1 − cos vk(x))dx, vk+1 =

(
‖vk‖

‖ṽ‖

)3/2

ṽ, (42)

(the L1-norm is used). The results for b = 1 are displayed
in Fig. 3. Using (41) and (42) we were able to determine
numerically traveling waves in the whole range of velocities
0 < λ ≤ λc.

4.3. Estimate of the tails

Though, clearly, the integral equation for the traveling wave
(38) does not support truly compact solutions, it enables us
to estimate the decay rate of the tails (see [48] for a similar
analysis for waves in a chain of elastic spheres). For small v we
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Fig. 3. Top panel: the form of the localized traveling wave for λ = 0.5λc =

2/π . Bottom panel: the same in logarithmic scale. Markers show the wave form
on the discrete lattice. The dashed line represents the corresponding solution in
the quasicontinuum approximation.

can rewrite it as

v(t) =

∫ t+b

t−b
v2(τ )dτ. (43)

We assume that v(t) ∼ e− f (t) and that for large t , f (t) is a
rapidly growing function. Then we follow Watson’s Lemma
procedure to estimate the integral

v(t) ≈ e−2 f (t−b) 1
2 f ′(t − b)

. (44)

We rewrite (44) as

e− f (t)
= e−2 f (t−b) 1

2 f ′(t − b)

or as

f (t) = 2 f (t − b)+ ln 2 f ′(t − b). (45)

In the first approximation we neglect the logarithmic term
and obtain f0(t) = 2 f0(t − b) with a solution f0(t) = C2t/b

=

C exp( ln 2
b t) where C is an arbitrary constant. For the first

correction f1(t) we obtain from (45)

f1(t)− 2 f1(t − b) = ln 2 f ′

0(t − b) = ln C
ln 2
b

+
ln 2
b

t.

Seeking a solution of the form f1(t) = At + B we obtain

At + B − 2A(t − b)− 2B = + ln C
ln 2
b

+
ln 2
b

t.

Thus

A = −
ln 2
b

B = −2 ln 2 − ln C
ln 2
b

= ln
b

C4 ln 2
,

which finally yields

f (t) = C exp
(

ln 2
b

t

)
− t

ln 2
b

+ ln
b

C4 ln 2
.

Fig. 4. The compacton Fig. 3 in a doubly logarithmic scale. The nearly linear
tails are consistent with estimate (46).

For large t we may neglect the last term and obtain

v ≈ e− f (t)
= exp

[
−C exp

(
ln 2
b

t

)
+ t

ln 2
b

]
. (46)

The superexponential decay of tails is visualized in Fig. 4
where the compacton of Fig. 3 is presented on a doubly
logarithmic scale.

Perhaps the most remarkable feature of our analysis is the
fact that the structures obtained on the basis of quasicontinuum,
which appends the continuum with a leading dispersive effect,
approximate so well the exact discrete process. One expects
quasicontinuum to approximate well a dense lattice which is
close to continuum, but our lattice is sparse. The main core of
the discrete solution consists of five points, and 2–3 points at
each side of the tail. Any point beyond has no measurable effect.
Part of the explanation for the remarkable proximity can be
attributed to q(v) being a symmetric function, with the global
conditions for the lattice and quasicontinuum being the same
and automatically satisfied.

5. Numerical studies

In this section we describe numerical simulations of the
lattice (7). We do not aim to provide a comprehensive
classifications of all possible regimes, rather we dwell on the
features that we find notable, if not remarkable. We start with
long chains (effectively infinite chains) so that boundary effects
are irrelevant and in Section 6 we shall present the long-time
behavior in finite lattices.

5.1. Evolution from a compact initial datum

Initial conditions are taken in a form of an unimodal pulse

vn(0) = A sin
(
π

n − n0

M

)
, (47)

with two free parameters — amplitude A and width M . From
Fig. 5(a) one notes that a relatively wide pulse decomposes
into a sequence of compactons. The adjective ‘wide’ means
that the pulse’s width is many time that of the compacton.
That the emerging compactons are ordered according to their
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Fig. 5. Evolution of the initial pulse (47). (a): M = 34, A = π/4 (b): M = 34, A = π .
amplitudes is natural because their velocities are monotonously
related to their amplitudes, see (35). In addition to compactons,
an initial pulse of a larger amplitude produces a new object –
kovaton – which we have seen in the quasicontinuum, and is
a composition of two kinks propagating with the same critical
velocity λc, see Fig. 5(b). In this simulation two features are to
be noted:

(i) The number of the emitted compactons decreases.
(ii) Though an increase in the amplitude may widen the

emerging kovaton, a natural way to induce wider kovatons
is to start with a wider initial condition.

To obtain some quantitative feeling, we characterize in Fig. 6
the dependence of the emitted objects on the parameters of
the initial pulse. Here the initial pulse is given via (47) with
a fixed width M = 34 and a varying amplitude A. In Fig. 6
the amplitudes of emitted compactons are presented. When
A < π/2 only compactons emerge, while for larger amplitudes
a kovaton (in this representation it is a ‘limiting compacton
with an amplitude π ’) appears. Notably, for A > 3π/4 some
compactons appear ‘in pairs’. A detailed inspection of space-
time plots like Fig. 5b shows that these compactons appear
nearly symmetrically at the left and right edges of the initial
pulse. Almost all compactons have positive amplitudes and
propagate to the right, however, for A > π/4 there is at least
one compacton propagating to the left.

When the initial profile is relatively narrow, apart from
a kovaton and a number of compactons, it also generates a
standing source of waves. An example of such structure is
depicted in Figs. 7 and 8. At this point we lack a theoretical
explanation for this wave source.

5.2. Collisions of compactons and kovatons

We start with a collision of two compactons in Fig. 9.
Discrete compactons are robust, but the collision is not entirely
elastic, as may be read from Fig. 10, where we depict the
maximal value of the field at each site. In the collision region
these maxima are not the amplitudes of the compactons, but
outside of it they are. The initial amplitudes of the compactons
are 0.27595 and 1.3955. After the collision the measured
amplitude of the larger compacton was 1.3956, the amplitude of
the smaller one varied in the range 0.27407–0.27411 depending
on the initial separation of compactons. The amplitude losses of
Fig. 6. Compactons and a kovaton resulting from the initial profile (47) with
M = 34 and different initial amplitudes A. Upper panel: values of integral
I1 (11); bottom panel: the amplitude. The kovaton first appears at A ≈ π/2,
its amplitude is constant but the width and, correspondingly, the value of I1,
increase with A. Since the small-amplitude compactons evolve very slowly, a
finite time integration probably will miss some of these compactons.

Fig. 7. Evolution of an initial field vk (0) = −1, vk+1 = 1, and vn = 0 for all
other n. See also Fig. 8. The leading edge is formed by a 0 − π kink, the width
of the plateau at u = π is growing along the propagation front.

the smaller compacton are more significant. After the collision
the collision site is marked with a left over residuum that
decomposes very slowly into small-amplitude pairs of anti-
compactons that are emitted to the left and compactons that
are emitted to the right. In Fig. 11 we show the amplitudes of
the emitted compactons and the characteristic times at which
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Fig. 8. The final waveform at t = 150 for the same initial conditions as
in Fig. 7. Two symmetric kovatons (or, if one desires, a kovaton and an
antikovaton) are followed by propagating waves.

Fig. 9. Collision of two compactons having velocities 0.2 and 0.9.

they leave the collision domain. This process may, presumably,
continue indefinitely. Note that at small amplitudes the process
is invariant under scaling (19). Thus it takes ‘forever’ for the
smaller compactons to emerge.

In Fig. 12 we show a symmetric collision of a compacton
and an anticompacton (both have speed 0.5). Remarkably,
while both compactons survive the collision, a pair of larger
compactons is born. This can be attributed to the small
amplitude instability mentioned in Section 3.2.

Next, in Fig. 13 we consider a collision of a compacton
and a kovaton. The features of this collision are similar to that
of two compactons: the amplitude of the compacton decreases
slightly after collision (for the displayed case from 0.560164 to
0.556288) with some leftover marking the collision site. The
kovaton also experienced small changes: its integral I1 (Eq.
(11)) increased from 31.4159 to 31.4167. Finally, in Fig. 14
we illustrate a collision of a kovaton with an antikovaton. Both
objects preserve their amplitude after the collision, but a ripple
emerges.

5.3. Interpretation of solutions in terms of oscillators phases

So far we have considered the solutions of the lattice (8)
in terms of the derived field variable vn(t). We now return to
the original phases. According to (3), the oscillator phase is
ϕn =

∑n
vk . Thus compacton solution of vn(t) corresponds to

a propagating step between two domains of constant phases. We
illustrate this field in Fig. 15, which corresponds to the solution
of Fig. 5(a).

Lattice with vn = 0 is in-phase, while for vn = π

the neighboring states are in anti-phase, with the differences
between the oscillator phases being now π . Thus a kink 0 − π

shown in Fig. 2 is an interface moving between the in-phase and
anti-phase states. A kovaton is a segment of a lattice in the anti-
phase state which propagates within an in-phase lattice. The one
in Fig. 16 corresponds to the solution in Fig. 5(b).

6. Chaos in a finite lattice

6.1. Equations for finite lattices

So far we have considered an infinite lattice of coupled
oscillators. In a finite lattice we have to append the problem
with suitable boundary conditions. We restrict our attention to
oscillator lattices of finite length N with ‘open ends’. Eq. (2)
are then valid in the bulk while the first and last oscillator are
driven by one neighbour only

ϕ̇1 = q(φ2 − φ1), ϕ̇N = q(φN−1 − φN ). (48)

Consequently, the equations for v1 and vN−1 have to be
modified and instead of (7) we have

v̇1 = q(v2),

v̇n = q(vn+1)− q(vn−1) 2 ≤ n ≤ N − 2,

v̇N−1 = −q(vN−2).

(49)

These boundary conditions are important for spatially
homogeneous states. The state with vn = V is possible only
if q(V ) = 0. Thus if q(v) = cos v − 1, then the in-phase state
v = 0 exists but the anti-phase state v = π does not. Also the
conservation laws (11)–(13) have to be reconsidered. Property
Fig. 10. Maxima of the field at different sites for the collision Fig. 9. Upper panel shows the values for the larger compacton, bottom panel for the smaller one. Both
compactons propagate from left to right.
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Fig. 11. Amplitudes of compactons evolving from a ripple left after the
collision Fig. 9. Compactons evolve to the right and anticompactons, far fewer,
to the left. This, due to mass conservation, is a reflection of the fact that the total
mass of the ripple was not zero, i.e., some mass was lost during the collision of
compactons.

(13) is valid for any N , while a combination of I1 and I2 is for
even N ’s only. Thus the finite lattice (49) conserves

S =

N−1∑
n=1

Q(vn), and K =

[
N
2

]∑
n=1

v2n−1 (for even N ). (50)

Remarkably, system (49) is Hamiltonian2: for even N = 2m+2
one has

H = Q(s1)+

m∑
n=1

Q(pn)+

m−1∑
n=1

Q(sn+1 − sn)

+ Q(K − sn), (51)

while for odd N = 2m + 1, the Hamiltonian is

H = Q(s1)+

m∑
n=1

Q(pn)+

m−1∑
n=1

Q(sn+1 − sn). (52)

Canonical variables {sn, pn} are then defined according to

pn = v2n, sn =

n∑
j=1

v2 j−1. (53)

Note that the integral S is the ‘energy’ and the unusual form of
the kinetic energy Q(P).

6.2. Destruction of compactons and the emergence of chaos

In Fig. 17 we show what happens to an initial compacton
(having velocity λ = 0.7) in a lattice with boundary conditions
(49) and q(v) = cos v − 1: after a few ‘reflections’ from the
boundaries the compact structure is lost and an irregular regime
emerges.

To study whether regular or chaotic regimes are predominant
in the lattice (49) we carried out statistical tests: starting with
randomly chosen initial conditions we calculated the Lyapunov
exponents. The results are presented in Fig. 18. We used lattices

2 This observation is due to Holger Dullin.
Fig. 12. Collision of a compacton and an anticompacton gives rise to a pair of
large-amplitude compactons.

Fig. 13. Collision of kovaton (λ = 4/π ) with compacton (λ = 0.4).

Fig. 14. Collision of a kovaton with an antikovaton. Unlike Figs. 12 and 13,
we do not present the data as a surface plot like in Figs. 12 and 13 because the
field profile taken modulo 2π looks rather erratic, because if at certain lattice
sites the field v rotates by values larger than ±2π , then after remapping it to the
(0, 2π) interval, one obtains vertical lines corresponding to 2π -jumps. Such
jumps can be already seen in Fig. 12; for the processes presented in this figure
and Figs. 15–17 below the number of these jumps is even larger. Therefore,
instead of drawing a surface, we use here a color coding that is 2π -periodic (a
corresponding continuous gray coding is impossible).

of length N = 5 and N = 7, because for these odd N ’s
only one integral exist. These are Hamiltonian systems with
two and three degrees of freedom, respectively. Remarkably,
a regular behavior appears to be rather improbable. For
N = 5 almost always a chaotic dynamics with one positive
Lyapunov exponent has been observed, only 6 runs out of 3000
yielded zero Lyapunov exponents. For N = 7 in all 3000
numerical runs only two positive Lyapunov exponents have
been observed.
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Fig. 15. The phase field corresponding to the solution Fig. 5(a), in the same
color coding as in Fig. 14. The initial profile (47) corresponds to the phase step.
This step evolves into a number of smaller steps corresponding to compactons.
Between these steps the phase is constant (stripes of uniform color).

Fig. 16. The phase field corresponding to the solution in Fig. 5(b), it has
the same color coding as Fig. 14. The initial profile (47) corresponds to
the phase step. This step evolves into a number of smaller steps represented
by compactons. Between these steps the phase is constant. The kovaton in
this picture appears as a chessboard strip: a segment of the anti-phase state
propagating over the in-phase state.

Fig. 17. Evolution of the initial compacton with λ = 0.7 in a lattice of N = 11
oscillators (10 values of vn are shown in the same color coding as in Fig. 14).

For large N a spectrum of Lyapunov exponents is
observed, [49]. Plotted as functions of the number normalized
by N , they form a universal curve (Fig. 19) which is typical
for spatio-temporal chaos. Notably, in all our calculations the
number of zero Lyapunov exponents was two for odd N ’s and
three for even N ’s, which clearly demonstrates that there are no
additional integrals beyond the aforementioned ones S and K .
Fig. 18. Lyapunov exponents in dependence on the integral S for lattices of
length N = 5 and N = 7.

Fig. 19. Spectra of Lyapunov exponents for N = 33, 65, 129 for S = 0:
Lyapunov exponents Λk are drawn in dependence on the normalized index
k/(N − 1). The curves converge to an asymptotic Lyapunov spectrum; only
the positive part of spectrum is shown, the negative part is symmetric to it.

7. Complex Ginzburg–Landau lattice

In this section we demonstrate how realistic dispersively
coupled oscillators give rise to phase equations similar to the
ones discussed above plus some dissipative effects.

7.1. Complex Ginzburg–Landau lattice

The celebrated complex Ginzburg–Landau equation de-
scribes spatio-temporal dynamics in an active medium close to
a Hopf bifurcation [49,50]. Its version on a lattice, the Complex
Ginzburg–Landau Lattice (CGLL),

dAn

dt
= An(1 − (1 + ic1)|An|

2)+ (c2 + ic3)

× (An−1 + An+1 − 2An), (54)

describes a chain of self-sustained oscillators with a linear
coupling. Here time and the complex amplitude An are
normalized so that the stationary amplitude of a single oscillator
is |An| = 1 and its linear growth rate is unity. Parameter c1
characterizes a nonisochrony of a single oscillator, while c2 and
c3 represent the dissipative and reactive parts of the coupling,
respectively. Considering the coupling parameters as small, we
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reduce (see details in the Appendix) the dynamics to a phase
equation

v̇n = (c3 − c1c2)∇d cos v + (c2 + c1c3)∆d sin v

+
c2

2

2
∇d(sin v∇d cos v)+

c2c3

2
∆d(cos v∇d cos v)

−
c2c3

2
∆d(sin v∆d sin v)−

c2
3

2
∆d(cos v∆d sin v). (55)

This equation contains both terms linear in coupling (∝ c2, c3)

and quadratic ones. For isochronous oscillators with c1 =

0 the first order c3-term is dispersive and corresponds to
even coupling of phases while the c2-term is dissipative (odd
coupling function). In the second order in coupling it is not so
easy to classify the higher order operators.

In Fig. 20 we illustrate the evolution of a compacton in
the CGLL, Eq. (54). As an initial condition we have used a
compacton solution of (8) with velocity λ = 0.5. Coupling
parameters were fixed at c2 = 0, c3 = 0.01 and the
nonisochronicity parameter of the single oscillator, c1, was
varied. For this choice of parameters (55) reduces to

1
c3

dvn

dt
= ∇d cos v + c1∆d sin v −

c3

2
∆d(cos v∆d sin v). (56)

Eq. (56) has two dissipative parts. For states with nearly
uniform phase, i.e. for v ≈ 0, the third term is dissipative. The
nature of the second term depends on the sign of c1 and is anti-
dissipative for c1 < 0. For large |c1| the second term prevails,3

which means that the anti-phase state is more stable than the in-
phase state. However, this changes for small |c1|. Accordingly,
one observes an acceleration and growth of the amplitude of
the compacton for large |c1|, and deceleration and decrease in
amplitude for small |c1|. For the particular compacton in Fig. 20
with c1 ≈ −0.0065 the two opposing effects nearly cancel and
the compacton propagates at an almost constant velocity.

7.2. Perturbation theory for compactons

In this section we develop a simple perturbation theory
for small-amplitude compactons and use the quasicontinuum
approximation of Section 3.3 with the compacton given by
Eq. (32).

Inspecting Eq. (55) we note that for small v’s, except for the
leading first term, only the second and the last terms on the r.h.s.
are important. Thus for small-amplitude compactons we write
a small-amplitude variant of (56)

v̇n = −
1
2
∇dv

2
+ α∆dv + β∆2

dv, (57)

which on the quasicontinuum level yields

∂v

∂t
= −

(
∂

∂x
+

1
6
∂3

∂x3

)
v2

+ α
∂2

∂x2 v + β
∂4

∂x4 v. (58)

3 Note, however, that a direct comparison of the two dissipative effects is a
bit tricky because, using in continuum limit the second term on the r.h.s. of (56)
turns into a Laplacian ∆d while the third term into a bi-Laplacian ∆2

d . Each
of these operators has its particular properties (the bi-Laplacian does not, for
instance, preserve the maximum principle and initially positive data need not
remain so).
Fig. 20. Amplitude (top panel) and space-time trajectory (bottom panel) of a
propagating compacton (with λ = 0.5) for three values of constant c1 for the
complex Ginzburg–Landau lattice (54) with c2 = 0, c3 = 0.01.

We use the integrals of the unperturbed (i.e. with α = β =

0) version of (58) (cf. (11) and (13)) I1 =
∫

∞

−∞
dxv and

I3 =
∫

∞

−∞
dxv3 to find the evolution of the compacton (32):

vc(x, t) =
4λ
3 cos2 k(x − λt) where k =

√
3/8. Writing an

equation for the evolution of I3 we have

d
dt

∫ π/2k

−π/2k
dxv3

c = 3
∫ π/2k

−π/2k
dxv2

c

(
α
∂2

∂x2 + β
∂4

∂x4

)
vc. (59)

Evaluation of the integrals yields

dλ
dt

= −
3
5

(
α −

3
2
β

)
λ. (60)

Since the integral I1 is conserved in the presence of
perturbations (58), this allows us to find the ‘tail’ that appears
due to changes in the compacton’s amplitude. First, we write
the conservation of I1 as∫

dxvc(x, t)+

∫
dxvtail(x, t) = I1 = const. (61)

Now suppose that the tail stretches from the initial position of
the compacton x = 0 up to its present position X =

∫ t
0 λ(τ)dτ .

Then from (60) and (61)

d
dX

∫ X

0
dxvtail(x, t) = −

1
λ

d
dt

∫
dxvc(x, t)

=
2π
5k

(
α −

3
2
β

)
. (62)

This means that the tail has a constant plateau

vtail =
2π
5k

(
α −

3
2
β

)
. (63)
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This plateau is positive if the compacton decays and negative
if it grows. Estimates (60) and (63) are in good agreement with
numerics.

8. Conclusions

In this paper we have demonstrated that in lattices of
dispersively coupled autonomous, self-sustained oscillators,
compactons and kovatons are the natural building blocks of
the dynamics. In a lattice these nonlinear solitary waves with
an almost-compact support are possible thanks to a degeneracy
of the linearized part resulting, in particular, in a nonexistence
of linear waves. Remarkably, the phase dynamics of oscillator
lattices is a physically observable phenomenon because the
phase space of a finite lattice is a torus, thus the solutions
are well-defined at all times. Numerics shows, however, that
compactons and kovatons, although undergoing almost elastic
collisions, on a long time scale induce a spatio-temporal chaos.

It is clear that in spite of the volume of this article, many
interesting and important issues concerned with the phase
dynamics of compacton-bearing lattices are yet to be addressed.
This is left for a forthcoming work.
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Appendix. The complex Ginzburg–Landau lattice

Let Ak = Rkeiϕk , then (54) can be written as

Ṙk = rk − R3
k + c2(Rk+1 cos(ϕk+1 − ϕk)

+ Rk−1 cos(ϕk−1 − ϕk)− 2Rk)

− c3(Rk+1 sin(ϕk+1 − ϕk)

+ Rk−1 sin(ϕk−1 − ϕk)),

ϕ̇k = −c1 R2
k + c2

(
Rk+1

Rk
sin(ϕk+1 − ϕk)

+
Rk−1

Rk
sin(ϕk−1 − ϕk)

)
+ c3

(
Rk+1

Rk
cos(ϕk+1 − ϕk)

+
Rk−1

Rk
cos(ϕk−1 − ϕk)− 2

)
.

We now expand in small parameters c2 and c3.
In the ‘zeroth’ order a limit cycle with R = 1 sets on. In

the next order we take R = 1 + r and introduce a new variable
vk = ϕk+1 − ϕk . Thus

ṙk = −2rk + c2(cos(vk)+ cos(vk−1)− 2)

− c3(sin(vk)− sin(vk−1)).

As the amplitude follows the variations of the phases, we
assume that ṙk ≈ 0 and obtain

rk =
c2

2
(cos(vk)+ cos(vk−1)− 2)−

c3

2
(sin(vk)− sin(vk−1)),
to be used in the equation for ϕk , but first:

R2
k ≈ 1 + 2rk,

Rk+1

Rk
≈ 1 + rk+1 − rk = 1 +

c2

2
∇d cos vk −

c3

2
∆d sin vk,

Rk−1

Rk
≈ 1 + rk−1 − rk = 1 −

c2

2
∇d cos vk−1 +

c3

2
∆d sin vk−1.

This gives

ϕ̇k = −c1 − c1c2(cos vk + cos vk−1 − 2)

+ c1c3(sin vk − sin vk−1)

+ c2(sin vk − sin vk−1)+ c3(cos vk + cos vk−1)

+ (c2 sin vk + c3 cos vk)
(c2

2
∇d cos vk −

c3

2
∆d sin vk

)
− (c2 sin vk−1 − c3 cos vk−1)

(
−

c2

2
∇d cos vk−1

+
c3

2
∆d sin vk−1

)
.

Finally, composing an equation for phase differences vk we
obtain

v̇k = (c3 − c1c2)∇d cos vk + (c2 + c1c3)∆d sin vk

+
c2

2

2
∇d(sin vk∇d cos vk)+

c2c3

2
∆d(cos vk∇d cos vk)

−
c2c3

2
∆d(sin vk∆d sin vk)−

c2
3

2
(cos vk∆d sin vk).

As in (10), in the first order in c2, c3 only the first two terms
appear.
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