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We analyze the delayed feedback approach to suppression of collective synchrony in a population
of globally or randomly coupled neurons. In particular, we consider the main factors of imper-
fection of the control scheme and their influence on the suppression efficiency. Next, with the
help of a realistic model of synaptically coupled population of inhibitory and excitatory neurons
we demonstrate the potential of the suppression scheme for neurophysiological applications.
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1. Introduction

Collective dynamics of large populations of neu-
rons is widely studied in neurophysiological exper-
iments as well as in theoretical works. These
studies are motivated by the importance of macro-
scopic rhythmical activity in both physiological and
pathological brain functioning. On the other hand,
the understanding of cooperative behavior in a large
ensemble of interacting units constitutes an impor-
tant problem of nonlinear dynamics.

A particular problem of high practical impor-
tance is to develop techniques for the control of
collective neuronal activity. The importance of
this task is related to the hypothesis that patho-
logical brain rhythms, e.g. observed in patients
with Parkinson’s disease and epilepsies, appear due
to the synchrony of many thousands of neurons.

Correspondingly, suppression of undesirable col-
lective synchrony in a population of neurons is
a challenging problem of neuroscience. Its solu-
tion may essentially improve the so-called Deep
Brain Stimulation (DBS) technique, currently used
in medical practice to suppress Parkinsonian and
essential tremor [Benabid et al., 1991]. This tech-
nique implies implantation of microelectrodes deep
into the brain of a patient, either in the subthalamic
nucleus or globus pallidus, and continuous stimula-
tion of this target by a high frequency (about 100 or
120 Hz) periodic pulse train; the stimuli are deliv-
ered by a controller implanted into the chest. Note-
worthy, in spite of rather broad usage of DBS1 the
neurophysiological mechanisms of such stimulation
are poorly understood, and therefore its parame-
ters are chosen by trial and error. Most likely, high

∗URL: www.agnld.uni-potsdam.de/∼mros
1For example, one of the producers of DBS controllers, the Medtronic Inc, reports on over 20 thousands of patients using their
devices.
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frequency DBS mimics lesioning of the tissue by
quenching the firing of neurons. This fact, as well
as the necessity to apply the (rather strong) stim-
ulation continuously, calls for development of more
efficient suppression techniques.

Development of model based DBS techniques
exploiting the methods of nonlinear dynamics and
statistical physics was pioneered by P. A. Tass,
who proposed a number of approaches. The main
idea of these approaches is that suppression of the
pathological rhythm should be achieved in such
a way that (i) activity of individual units is not
suppressed, but only their firing becomes asyn-
chronous, and (ii) the stimulation should be min-
imized, e.g. it is desirable to switch it off as soon
as the synchrony is suppressed (see [Tass, 1999,
2001, 2002a, 2002b, 2002c, 2002d, 2003] and refer-
ences therein). Following these ideas we suggested in
our previous publications [Rosenblum & Pikovsky,
2004a, 2004b] a delayed feedback suppression con-
trol scheme (Fig. 1) which we further analyze in this
paper. In our approach it is assumed that the col-
lective activity of many neurons is reflected in the
local field potential (LFP) which can be registered
by an extracellular microelectrode. The delayed and
amplified LFP signal can be fed back into the sys-
tem via the second or same electrode (see [Ozden
et al., 2004] and references therein for a description
of one electrode measurement-stimulation setup).
Numerical simulation as well as analytical analysis
of the delayed feedback control demonstrate that it
indeed can be exploited for suppression of the col-
lective synchrony.

Fig. 1. Scheme of the suggested approach to deep brain
stimulation [Rosenblum & Pikovsky, 2004a, 2004b]. The local
electrical field in a neuronal population should be measured
by the recording electrode and fed back via the field applica-
tion electrode. The device should contain a delay line and an
amplifier.

Mechanisms of generation of Parkinsonian
tremor are not yet completely understood. In
spite of attempts to develop detailed mathematical
description of oscillatory processes in correspond-
ing parts of the brain, i.e. in subtalamic nucleus
and external global pallidius networks (see [Bevan
et al., 2002; Rubin & Terman, 2004] and refer-
ences therein), there is no well-accepted model that
can be exploited as a test system for simulation
of DBS. Besides, such modeling would require very
high computational resources. Correspondingly, the
DBS techniques based on the ideas of nonlinear
dynamics have been so far tested only on a rela-
tively simple conceptual models: globally coupled
phase [Tass, 1999, 2001, 2002a, 2002b, 2002c, 2002d,
2003] or neuronal [Rosenblum & Pikovsky, 2004a,
2004b] oscillators. Thus, only suppression of activ-
ity of an isolated neuronal population has been
considered so far. In the present paper we fur-
ther elaborate on this important problem and
mostly remain within this framework. However, we
make several steps towards mode realistic mod-
eling, in particular we consider more realistic
coupling between neuronal units via synaptic con-
nections. Next, there are many issues, important
for the practical applications, like influence of mea-
suremental noise, finite-size effects, or impact of
the connectivity in the network, which can hardly
be treated analytically or have not been consid-
ered in the idealized model studied in [Rosenblum
& Pikovsky, 2004a, 2004b]. These issues are also
addressed in the present paper.

2. Suppression of Synchrony in
Ensemble of Globally Coupled
Neurons

2.1. Phenomenological description
and minimal model

Theoretical analysis of the delay controlled ensem-
ble dynamics is related to the assumption that
emergence of collective synchrony can be under-
stood as the Kuramoto transition [Kuramoto, 1975,
1984; Winfree, 1980; Mirollo & Strogatz, 1990] Ana-
lytical treatment of the problem can be performed
only for an idealized model under assumption of
(i) global (each-to-each) interaction, (ii) infinitely
large ensemble size, and (iii) weak coupling (i.e. in
the phase approximation) [Rosenblum & Pikovsky,
2004a]. Another approach is based on a quite gen-
eral consideration of the Kuramoto synchronization
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transition in an ensemble as the Hopf bifurcation
for the mean field, and on the analysis of the
corresponding model amplitude equation (normal
form) for the dynamics of the complex mean field
A [Kuramoto, 1984; Crawford, 1994]. With the
account of a delayed feedback loop, this equation
takes the form [Rosenblum & Pikovsky, 2004b]

Ȧ = (ε − εcr + iω)A
+ εfe−iαL(A(t), A(t − τ)) − ζ|A|2A. (1)

Here the factor ε describes the internal global cou-
pling in the ensemble; if it exceeds the critical
value εcr then synchrony sets in the population and
macroscopic mean field appears. εf describes the
strength of the feedback and τ is the delay; the
phase shift α depends on the properties of indi-
vidual oscillators and on how the feedback term
appears in their equations. The operator L has dif-
ferent form for different feedback schemes, discussed
and compared below. Qualitatively, the effect of
the delayed feedback can be understood in the fol-
lowing way: for proper feedback parameters εf , τ
the delayed term compensates the instability due
to internal coupling (described by increment ε −
εcr) and thus changes the linear stability of the
system.

Theoretical analysis of Eq. (1) provides the
domains of control, i.e. the ranges of delay time
and amplification in the feedback loop for which
the control is effective. These results are in a
good correspondence with the numerical simula-
tion of the ensemble dynamics with different neu-
ron models used for the description of individual
units (Bonhoefer–van der Pol or Hindmarsh–Rose
equations [Hindmarsh & Rose, 1984], Rulkov map
model [Rulkov, 2001]), see [Rosenblum & Pikovsky,
2004b]. We illustrate this using a computation-
ally efficient neuronal model, proposed by Rulkov
[2001, 2002] and further developed in [Rulkov et al.,
2004]. In this model a neuron is described by
a 2D map. In spite of its simplicity, this model
reproduces most regimes exhibited by the full
Hodgkin–Huxley model, but at essentially lower
computational costs, thus allowing detailed analy-
sis of the dynamics of large ensembles. In Fig. 2 we
demonstrate the results of the simulation of delayed
feedback suppression in an ensemble of Rulkov
neurons

xi(n + 1) =
4.3

1 + x2
i (n)

+ yi(n) + εX(n) + C,

yi(n + 1) = yi(n) − 0.01(xi(n) + 1),
(2)

Fig. 2. Domains of control for the system (2) in the param-
eter plane delay — feedback strength, for differential (top
panel) and direct (bottom panel) schemes. Color codes the
coefficient of suppression (see text). Internal coupling is
ε = 0.06.

where n is the discrete time, i = 1, . . . , N is the
index of a neuron in the population, and

X(n) =
1
N

N∑
1

xi(n)

is the mean field. The delayed-feedback control
is described by the term C. In the following we
consider two types of feedback: direct control C =
εfX(t − τ) and differential control C = εf (X(t −
τ) − X(t)). The parameters in Eqs. (2) are chosen
in such a way that individual units are in the regime
of chaotic bursting. The efficiency of suppression is
quantified by the suppression factor

S =
(

var(Xoff )
var(Xon)

)1/2

, (3)

where Xoff and Xon are the mean fields observed in
the case of the feedback off or on, respectively. High
values of S = S(τ, εf ) (Fig. 2) provide the domains
of control. Certainly, the suppression in the system
(2) is not perfect: the suppression factor remains
finite due to finite-size effects, discussed below.
In other words, the suppressed mean field is not
zero, but exhibits some irregular fluctuations due
to a finite number of the elements in the ensemble.
Correspondingly, the borders of the control domains
can be determined only approximately, by setting
some cut-off level. However, the shape and position
of domains of control are in a good correspondence
with the results of the theoretical analysis of Eq. (1),
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which describes the idealized case of infinitely large
population size. Figure 2 demonstrates that sup-
pression of the synchrony can be achieved both by
the direct and differential control schemes. This
example also shows that differential control pro-
vides less domains of control, but these domains
are generally larger and the suppression factor is
higher. Another advantage of the differential con-
trol scheme is that it provides noninvasive suppres-
sion, in the sense that limN→0 C = 0, whereas for
the direct control suppression is generally invasive,
limN→0 C = const.

2.2. Realistic model of a synaptically
coupled ensemble

In this section we go beyond the minimal model (2)
and explore the possibility of population rhythms
suppression in a physiologically plausible model of
a neuronal ensemble. For this purpose, we use, fol-
lowing [Rulkov et al., 2004], a model of rhyth-
mic activity in a neuronal population of excitatory
and inhibitory neurons with intrinsic properties and

connectivity structure reminiscent of real neuronal
networks.

Excitatory neurons are modeled as regular spik-
ing (RS) neurons, which are the most typical neu-
rons in the cortex. They are characterized by
repetitive firing in response to a depolarizing input
current and an intrinsic spike-frequency adaptation
mechanism, i.e. their firing rate slows down during a
prolonged depolarizing current. Inhibitory neurons
are of fast spiking (FS) type, that is, they show
little or no adaptation when compared with regu-
lar spiking (RS) neurons. Both types of neurons are
described by a phenomenological map-based model
of spiking-bursting neuronal activity [Rulkov, 2001,
2002; Rulkov et al., 2004], which reproduces the typ-
ical firing patterns displayed by cortical neurons,
such as regular spiking, fast spiking, and intrinsic
bursting.

Each inhibitory neuron is modeled by

x(n + 1) = f(x(n), x(n − 1), yrs + β(n)), (4)

where n is the discrete time, yrs is constant rest
potential, and the nonlinear function f(·) is given by

f(x(n), x(n − 1), u(n)) =




α

1 − x(n)
+ u(n) if x(n) ≤ 0,

α + u(n) if x(n) < α + u(n) and x(n − 1) ≤ 0,
−1 if x(n) ≥ α + u(n) and x(n − 1) > 0,

(5)

where u(n) = yrs+β(n), and α is a parameter. Vari-
able β(n) incorporates the action of (total) synap-
tic Isyn and nonsynaptic Iext input currents entering
the neuron:

β(n) = βsynIsyn(n) + βextIext(n) + βhpIhp, (6)

where βsyn, βext, and βhp are constants. Ihp is an
intrinsic hyperpolarizing current which dynamics is
described by

Ihp(n + 1) =
{

γhpIhp(n) − ghp if neuron fires,
γhpIhp(n) otherwise

(7)

where ghp and γhp are constants. (Here the condi-
tion of firing at time n is equivalent to the condition
x(n) < α + u(n) and x(n − 1) ≤ 0, cf. Eq. (5).)

Excitatory neurons are modeled by two-
dimensional maps, which allow to describe the
mechanism of firing rate adaptation. The model has

the form:

x(n + 1) = f(x(n), x(n − 1), y(n) + β(n)),
y(n + 1) = y(n) − µ(x(n) + 1) + µσ1 + µσ(n),

(8)

where x(n) and y(n) are the fast and the slow
dynamical variables, respectively, 0 < µ � 1 and σ1

are parameters, and f(·) is given by Eq. (5). Action
of input currents is described by variables β(n) and
σ(n):

β(n) = βsynIsyn(n) + βextIext(n),
σ(n) = σsynIsyn(n) + σextIext(n).

(9)

While modeling a population of neurons, we use
Eqs. (4)–(9) to describe the dynamics of each neu-
ron, labeling corresponding variables by an upper
index i = 1, . . . , N .

Synaptic connections between neurons are
characterized by their own, quite complicated, dyn-
amics. If there is a synaptic connection from jth
neuron to ith neuron, then, whenever the neuron
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with index j fires, it produces a current in the neu-
ron i; we denote this current as I

(i←j)
syn . The ith

and jth neurons are called postsynaptic and presy-
naptic neurons, respectively. The total normalized
synaptic current received by ith neuron is given by
the normalized sum of synaptic currents from all
neurons which have connections targeting the given
neuron, i.e.

I(i)
syn(n) = N−1

e

∑
(exc)

I(i←k)
syn (n) + N−1

i

∑
(inh)

I(i←l)
syn (n),

(10)

where Ne and Ni are the number of excitatory and
inhibitory neurons, respectively, and the first (sec-
ond) sum is taken over all excitatory (inhibitory)
neurons, targeting the ith neuron. Normalization by
Ne and Ni is performed in order to keep the balance
between excitation and inhibition for different sizes
of the ensemble, so that the size effects are avoided.
The time course of a postsynaptic current is
given by:

I syn(n + 1)

=




γI syn(n) − d(n)gsyn(xpost(n) − xrp)
if xpre(n) fires,

γI syn(n) otherwise,
(11)

where parameter γ defines the decay rate of the
synaptic current, gsyn is the maximum strength
of synaptic coupling, and xrp denotes the rever-
sal potential of the synapse,2 condition “xpre(n)
fires” means firing of the presynaptic neuron at
the time n. The indices pre and post stand
for the presynaptic and postsynaptic variables,
respectively. Variable d(n) models a neurochemical
mechanism of synaptic plasticity called synaptic
depression, which is associated with a decrease of
the synaptic strength in response to successive firing
of the presynaptic neuron. For excitatory synapses
between RS neurons, the time course of synaptic
depression is modeled by

d(n + 1)

=

{
(1 − ddep)d(n) if xpre(n) fires,
1 − (1 − drec)(1 − d(n)) otherwise,

(12)

where ddep and drec are parameters. For other
synaptic connections, the plasticity is neglected and
d(n) is assumed to be constant, d(n) = 1.

Suppression of the collective rhythm in an
ensemble of excitatory and inhibitory neurons was
simulated with the help of the model of Ne = 1000
excitatory RS neurons and Ni = 200 inhibitory
FS neurons. The connectivity is assumed to be all-
to all, with excluded self-connections. For simplic-
ity, we neglect the synaptic transmission delays.
Firing-rate heterogeneity within the ensemble is
ensured by external currents I

(i)
ext, where i is the

index of a neuron; these currents model the influ-
ence of distant brain areas. In our simulation, we
take I

(i)
ext = const for each neuron, but randomly dis-

tributed across the ensemble. We choose a Gaussian
distribution centered at 0.05 with rms(I(i)

ext) = 0.01,
which results in individual firing rates of RS and FS
neurons centered around ≈ 11 Hz and ≈ 30 Hz,
respectively (see Fig. 3). The parameters for the
simulation has been taken from [Rulkov et al.,
2004]. The parameter set for RS neurons is: µ =
0.0005, α = 3.65, σ1 = 0.006, σsyn = σext = 1,
βsyn = βext = 0.133, yrs = −2.9. The parameter set
for FS neurons is: µ = 0.002, α = 3.8, σsyn = σext =
1, γhp = 0.6, βsyn = βext = 0.1, ghp = 0.3, βhp = 0.5.
Parameters of synaptic connections are: γ = 0.6,
xrp = 0 for excitatory and γ = 0.8, xrp = −1.1 for
inhibitory synapses, ddep = 0.5 and drec = 0.01.3

With the increase of the synaptic coupling
between the neurons, the model demonstrates a
transition from independent firing to coherent col-
lective activity. A detailed analysis of the emergence
of rhythmic activity in the ensemble and its depen-
dence on intrinsic neuronal dynamics, properties of
synaptic coupling and connectivity is outside the
framework of the present study. Here we briefly
describe the pattern of rhythmical activity and the
effect of the feedback, displayed by the ensemble
considered here. Collective rhythm of the uncon-
trolled system example of the output for an oscil-
latory state is displayed in the middle column of
Fig. 3. It can be seen, that under the condition of
a relatively strong excitation (gsyn,RS→RS = 2.2,
gsyn,RS→FS = 1.0, gsyn,FS→FS = gsyn,FS→RS =
0.2), the ensemble generates stable macroscopic
oscillations consisting of bursts of high frequency
activity repeated at a low rate ≈ 6Hz. It is

2The reversal potential is the voltage at which the postsynaptic effect reverses sign.
3The choice of parameters is motivated by the dynamics of excitatory synapses involving the AMPA receptors and inhibitory
synapses involving GABAA receptors. Note the larger relaxation time of inhibition compared to excitation.
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Fig. 3. Suppression of collective neuronal activity in an heterogenous ensemble of excitatory/inhibitory neurons. (a) Activity
of one excitatory (red) and one inhibitory (black) neuron, for the uncoupled neurons (left), coupled neurons (middle), and
coupled neurons in the presence of delayed feedback (right panel). Respectively, (b) and (c) show for the same conditions the
ensemble mean field activity X and raster plots of the firing times of all neurons within the ensemble over the 0.05 s time
interval.

important to note that bursting is an ensemble
effect of RS excitatory neurons, because isolated
neurons fire regularly. This is consistent with the
previous study which has shown that a major deter-
minant of synchronized burst activity in networks
of excitatory regularly spiking neurons is the spike-
frequency adaptation mechanism [van Vreeswijk &
Hansel, 2001].

In modeling suppression of population rhythm
in an ensemble of RS–FS neurons we assume that
the control input acts as a common for all neurons
input current

If (n) = εf (X(n − τ) − X(n)), (13)

where X(n) = 1/N
∑

i xi(n) is the ensemble mean
field. We treat If (n) as an additional external

current which enters the r.h.s of Eqs. (6) and (9), so
that the correspondent term becomes βext(I ext+If ).
The control parameters εf and delay τ determine
the efficacy of the suppression control. In the right
panel of Fig. 3 we illustrate efficient suppression
of the collective rhythm for the parameter values
εf = 0.8 and τ = 0.035s ≈ T/4.

3. Beyond Idealized Model

3.1. Global coupling versus
random coupling

Global coupling in an ensemble is a theoretically
convenient approximation. Here we numerically
explore how good this approximation works, if the
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neurons are in fact coupled in a more complex, ran-
dom, way. There are many possibilities to model a
randomly coupled network. We consider that each
of N = 10000 neurons has Nl links, i.e. it is coupled
to Nl randomly chosen elements of the population.
The coupling strength ε within each pair is taken
to be the same. In Fig. 4 we plot the dependence
of the variance of the mean field var(x) on ε for
different number of links Nl. The synchronization
transition is similar to the case of the global cou-
pling, though it takes place for higher values of ε.
We see that the bifurcation curve for Nl = 50 prac-
tically coincides with that for the global coupling
case. Thus, the dynamics of an ensemble with ran-
dom coupling to Nl neighbors is qualitatively close
to the dynamics of the globally coupled population.
The delayed feedback control (direct scheme with
τ = 30 was used here) shifts the bifurcation curves
(Fig. 5), thus allowing one to control the transi-
tion, as in case of global coupling.4 Indeed, a shift
of the bifurcation curve to the right means decrease
of the mean field variance for given value of the
internal coupling in the ensemble, thus providing
suppression up to the level of noise fluctuations in
the system if the bifurcation value becomes larger
than the internal coupling. This is supported by the
computation of the control domains (the results are
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0

0.1

0.2

0.3

0.4 global
N

l
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N
l
=20

N
l
=10

N
l
=5

Fig. 4. Comparison of synchronization transition in ensem-
bles with all-to-all coupling and random coupling, when each
unit is coupled to Nl units. Bold red line shows the transition
for the case of all-to-all coupling. It is seen that the dynamics
of the ensemble with global coupling is very close to the case
of an ensemble with Nl = 50. For smaller number of links, the
dynamics is qualitatively similar, though the synchronization
transition happens for larger coupling ε.
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Fig. 5. Control of a randomly coupled ensemble of Rulkov
neurons, Nl = 10. Red curve illustrates the transition in the
uncontrolled system. Green, magenta, and blue curves corre-
spond to the case when the mean field of the whole popula-
tion has been used for the control, with the feedback strength
εf = −0.02, εf = 0.02, and εf = 0.04, respectively. The black
curve corresponds to the feedback with the local field mea-
sured at a randomly chosen site, εf = 0.02; this field is com-
puted as an average over the Nl = 10 units coupled to this
site.

similar to those shown in Fig. 2 and therefore are
not given here).

Black curve in Fig. 5 illustrates the case when
the feedback signal is not the mean field of the
whole population but the local field, acting on
one neuron. It is, C = εfN−1

l

∑
l xl, where index

l = 1, . . . , Nl numerates the neurons linked to the
chosen one. This example, to be compared with that
illustrated in Fig. 7 below, demonstrates that such
an imperfect measurement however provides sup-
pression, though it is not so effective as the con-
trol via mean field X (red curve). Summarizing the
results presented in Fig. 5, we conclude that mean
field approximation works very well even for mod-
erate connectivity of the network (50 links in an
network of 10000 elements in our example).

Note that for a certain parameter choice (neg-
ative εf for the given delay τ = 30) the bifurcation
curves are shifted to the left, which means that col-
lective synchrony can be enhanced. This property
of the feedback control complicates the adjustment
of parameters for suppression, but, on the other
hand, makes this technique suitable for excitation
of collective oscillations. The latter feature might be
used, e.g. in studies with experimental (brain slice)
models of Parkinson’s disease and epilepsy.

4Note that sufficiently strong feedback, εf = 0.04, changes the type of the bifurcation; now the transition exhibits hysteresis,
see blue curve in Fig. 5. See also a discussion in [Rosenblum & Pikovsky, 2004a].
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3.2. Finite size effect and
imperfection of the
feedback loop

In this section we numerically analyze the factors
that we cannot take into account in our analyti-
cal treatment. Having demonstrated that the mean
field (all-to-all) approximation provides nearly the
same results as the random coupling, in the fol-
lowing we remain in the framework of the globally
coupled ensemble, because of high computational
efficiency of this model. We analyze the factors
which make both this model and the control loop
nonideal. Namely, we simulate the influence of the
finite ensemble size, effect of noise in the mea-
surements, etc. In our computations we use 10000
Rulkov neurons and keep the internal coupling in
the Rulkov ensemble ε = 0.06.

3.2.1. Finite size effects

Numerical analysis shows that the dependence of
the suppression factor on the population size N
can be perfectly fit by the square root function,
S ∼ √

N , in correspondence to theoretical consid-
erations. Indeed, in the finite-size population the
mean field below the synchronization threshold can
be treated as a noise with the variance ∼ N−1

[Pikovsky & Ruffo, 1999]. On the other hand, for
ε > εcr, var(X) does not practically depend on
N and, at least for small subcriticality, var(X) ∼√

ε − εcr (provided the Hopf bifurcation for the
mean field is the supercritical one). Hence, the max-
imal possible suppression S ∼ √

(ε − εcr)N .

3.2.2. Additive noise in measurements

We model the situation when the mean field is mea-
sured with an error, so that the stored signal is
Xτ = X(t− τ)+ ξ, where ξ is taken as white Gaus-
sian noise. Simulations show that the suppression
technique is quite robust with respect to measure-
mental noise: if rms(ξ)/rms(X) ≈ 0.5 the suppres-
sion is still rather high, S ≈ 5, see Fig. 6.

3.2.3. Imperfect mean field measurement

Now we suppose that the recording electrode mea-
sures not the mean field of the whole ensemble,
but the mean field of a subpopulation containing
qN neurons, q ≤ 1, i.e. the control term has the
form εfXq(t − τ), where Xq = (qN)−1

∑qN
1 x(j),

and j = 1, . . . , qN are the indices of a (randomly)

picked subpopulation. Using Xq as the feedback sig-
nal still allows one to control the synchrony in the
ensemble, and the impact of the parameter q turns
out to be similar to the finite-size effect (Fig. 7);
here τ = 30, εf/ε = 1.

3.2.4. Imperfect action

Here we suppose that the radiated signal acts only
on a subpopulation of the size qN , q ≤ 1. Simula-
tions show that this imperfect action is equivalent to
a decrease of feedback factor εf , see Fig. 8. Here we
show two curves: the first one (boxes) corresponds
to variation of εf from zero to εmax

f = 1.5, whereas
the second one (circles) corresponds to variation

0

5
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15

20

25

0 0.1 0.2 0.3 0.4 0.5

Fig. 6. Suppression coefficient versus intensity of additive
noise in the measurement, for differential (red) and direct
(black) schemes, ε = εf = 0.06, τ = 30. For the presentation,
the noise is normalized by the root mean square of the mean
field in the uncontrolled ensemble.

0 2000 4000 6000 8000 10000
0
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30

Fig. 7. Efficiency of the control for the fixed population size
N = 10000, for differential (red) and direct (black) schemes,
in dependency on the size of the subpopulation Nsub = qN ,
where the mean field is registered (see text).
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Fig. 8. Efficiency of the control in case when only a subpop-
ulation of the size qN is affected by the feedback field for the
constant feedback factor εf = εmax

f = 1.5 (black boxes). This
curve should be compared with another one for the case when
the whole population is affected (q = 1), but the feedback fac-
tor is varied from zero to εmax

f (red diamonds). Overlap of
two curves demonstrates that imperfect stimulation, i.e. an
action on a subpopulation is equivalent to decrease of the
feedback strength εf .

of the subpopulation size qN . One can see that
the dependence of S on q can be not monotonic,
what corresponds to crossing a domain of control,
cf. Fig. 2

Similar dependence is observed for the dif-
ferential scheme. Thus, action on a subpopula-
tion is equivalent to decrease of the feedback
strength, and therefore can be compensated, unless
q becomes very small. We illustrate this with Fig. 9,
where we show the dependence of the suppression

0 2000 4000 6000 8000 10000
0

10

20

30

Fig. 9. Imperfect stimulation: delayed signal acts on the
subpopulation of size Nsub = qN . This imperfection can
be compensated by increasing the feedback strength, εf ∼
1/

√
Nsub. As a result, the suppression factor can be kept

constant unless Nsub becomes very small, Nsub ≈ 200; dif-
ferential control scheme is used in this example.

factor on the size of the population, influenced by
the feedback. Here the feedback strength was kept
according to εf/ε = 2/q.

Of special interest is the case when two elec-
trodes record and stimulate the activity of two
different, though overlapping populations. This sit-
uation is treated in the next section.

4. Case of Two Interacting
Neuronal Ensembles

For the following it is convenient to consider the
population of neurons, generating the undesired
rhythm, as consisting of two subpopulations: first
one is affected by the stimulating electrode, and the
mean field of the second one is measured by the
recording electrode. For simplicity we assume that
these populations do not overlap. In the spirit of a
phenomenological description outlined in Sec. 2.1,
we, instead of using Eq. (1), describe the popula-
tion by two symmetrically coupled equations for the
complex amplitudes A, B:

Ȧ = (ξ1 + iω1)A − |A|2A + ε(B − A)
+ εfB(t − τ),

Ḃ = (ξ2 + iω2)B − |B|2B + ε(A − B).
(14)

For generality, we first admit different parameters
(frequencies and increments) for both systems. To
analyze the stability, we substitute in (14) A = eλt,
B = keλt, where k is complex, and, considering
only linear terms, obtain the system of characteris-
tic equations

λ = (ξ1 + iω1) + ε(k − 1) + εfke−λτ ,

kλ = k(ξ2 + iω2) + ε(1 − k).
(15)

Excluding k we get:

(λ + ε − ξ1 − iω1)(λ + ε − ξ2 − iω2) = ε2+ εεf e−λτ .

(16)

Taking λ = iν/τ on the stability border and writing
the real and imaginary parts, we get:

(ξ1 − ε)(ξ2 − ε) −
(

ω1 − ν

τ

)(
ω2 − ν

τ

)
− ε2

= εεf cos ν,(
ω1 − ν

τ

)
(ξ2 − ε) +

(
ω2 − ν

τ

)
(ξ1 − ε)

= −εεf sin ν.

(17)
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Solving for τ, εf we obtain

εf = (ε sin ν)−1 ·
[
ν

τ
(ξ1 + ξ2 − 2ε)

−ω1(ξ2 − ε) − ω2(ξ1 − ε)
]

(18)

and

[ω1ω2 + ε(ξ1 + ξ2) − ξ1ξ2 − [ω1(ξ2 − ε)

+ ω2(ξ1 − ε)]cot ν] · τ2 + [(ξ1 + ξ2 − 2ε)cot ν

−(ω1 + ω2)]ν · τ + ν2 = 0, (19)

what provides the borders of stability domains in a
parametric form τ = τ(ν), εf = εf (ν).

These results are illustrated in Fig. 10(a),
where we compare the control domains for the
cases of perfect and imperfect measurement and
stimulation. By perfect measurement/stimulation
here we mean that the mean field of the whole
population of N elements is being registered, and
that the whole population is affected by feedback
signal. Correspondingly, by imperfect we denote the
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0 0.5 1 1.5 2
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Fig. 10. Domains of control for the case of perfect (black)
and imperfect (red) measurement/stimulation, for the case of
identical (a) and nonidentical (b) subpopulations, see text.
Panel (c) illustrates the case when the population, where the
measurement is performed, is by itself stable.

case when the mean field of the second population
of size N/2 is being registered, and the first popu-
lation, also of size N/2, is affected. The parameters
used in this figure are ξ1 = ξ2 = 0.02, ω1 = ω2 = 1,
ε = 0.05. We can conclude that the domains of
control generally shrink and shift with respect to
the case of perfect control. This is confirmed by
numerical simulation for the ensemble of Rulkov
neurons; this simulation also demonstrates that
the maximal possible suppression factor remains
nearly the same. Next, analysis of control domains
provided by Eqs. (18) and (19) shows that sup-
pression is also possible, if two populations are
not identical. It can be achieved for small fre-
quency mismatch (ω1 = 1, ω2 = 1.05), when
two coupled population remain synchronized, see
Fig. 10(b).

Finally, we illustrate the case when the subpop-
ulation, where the measurement is performed, is by
itself stable (in Eqs. (14) it corresponds to ξ2 < 0).
This situation may be considered as a model of
suppression with a measurement from a surface
electrode.5 An example of control domains for
parameters ω1 = 1, ω2 = 1.02, ξ1 = 0.02, and
ξ2 = −0.02, ε = 0.02 are shown in Fig. 10(c).

5. Discussion

We have analyzed the efficiency of the delayed feed-
back control of collective rhythms in a network of
neuronal oscillators as a possible tool for manipu-
lation of the neural synchrony. We have considered
different practical important factors like influence
of measuremental noise, imperfection of measure-
ment and stimulation, etc. We have created a new
step towards more realistic modeling by consider-
ing population of excitatory and inhibitory neurons
with synaptic connections, and we have shown that
the delayed control technique works in this case
as well. In summary, we have demonstrated that
the technique may be useful for neurophysiologi-
cal experiments, e.g. with brain slice cultures. An
important feature of our approach is that it does not
require any knowledge of the parameters of indi-
vidual neurons or access to them. Only collective
rhythms of the population should be measured, and
the stimulation should act on the ensemble as an
entity.

We mention also several limitations of the tech-
nique. First, it is efficient only if the system is not

5P. A. Tass, private communication.
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too far from the bifurcation point. Next, the appro-
priate parameters (delay and feedback strength)
can be only determined by trial and error, and
there exist so far no methods to determine them
a priori.
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