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We suggest a method for suppression of synchrony in a globally coupled oscillator network, based on the
time-delayed feedback via the mean field. Having in mind possible applications for suppression of pathological
rhythms in neural ensembles, we present numerical results for different models of coupled bursting neurons. A
theory is developed based on the consideration of the synchronization transition as a Hopf bifurcation.
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I. INTRODUCTION

Investigation of synchronization in large populations of
interacting oscillatory elements is an intensively developing
branch of nonlinear science[1–5], relevant to many prob-
lems of physics, chemistry, and life sciences, in particular, to
neuroscience. For example, synchronization can occur in ar-
rays of lasers and Josephson junctions, where this phenom-
enon may play a constructive role for generation of a strong
coherent field. In other cases synchronization may be harm-
ful; an illustrative example is the excitation of the left-to-
right swaying motion of London’s Millennium Bridge ob-
served on its opening day.1 This motion appeared due to
mutual synchronization of the steps of hundreds of pedestri-
ans. To prevent the onset of such synchronization, the bridge
has been reconstructed in such a way that the damping of its
corresponding oscillatory mode was essentially increased. In
many cases, when such a direct intervention into the system
is not possible, it is nevertheless desirable to control the syn-
chronous motion, in particular, to suppress it, when it ap-
pears.

An important example of this class is related to the col-
lective dynamics of neuronal populations. Indeed, synchro-
nization of individual neurons is believed to play the crucial
role in the emergence of pathological rhythmic brain activity
in Parkinson’s disease, essential tremor, and epilepsies; a de-
tailed discussion of this topic and numerous citations can be
found in [4,6,7]. Obviously, the development of techniques
for suppression of the undesired neural synchrony constitutes
an important clinical problem. Technically, this problem can
be solved by means of implantation of microelectrodes into
the impaired part of the brain with subsequent electric stimu-
lation through these electrodes[8–10]. However, in spite of
successful experimental studies followed by clinical applica-
tions, the physiological mechanisms of such stimulation re-
main unclear and the development of effective stimulation
techniques is a challenging problem of neuroscience and bio-
logical physics. In particular, it is important to minimize the

intervention caused by stimulation, e.g., by designing tech-
niques which allow supression of the pathological rhythm by
weak though precisely timed pulses[4].

In the present paper we systematically analyze and further
develop the time-delayed feedback control of the collective
synchrony in a complex oscillator network, suggested in our
previous publication[11]. Generally speaking, there are
many situations where synchrony appears or disappears with
variation of the system parameters, type of coupling, etc. In
particular, it is well known that the delayed interaction be-
tween two or many oscillators can suppress or facilitate the
synchrony[6,12–14], as well as result in oscillation quench-
ing [15,16]. However, these effects of delay are hardly suit-
able for the purposes of control, because typically the equa-
tions and parameters of the system are unknown and cannot
be accessed. The advantage of the particular setup of[11] is
in the usage of anexternaldelayed loop, a few parameters of
which (delay time, feedback strength) can be easily con-
trolled by an experimentalist. Contrary to many other prob-
lems where a suppression of synchrony has been observed,
the suppression with the method considered here requires
neither information on the details of the individual oscillators
and their interactions nor access to their parameters. Only the
macroscopic properties of the collective dynamics determine
the feasibility of the control.

We concentrate on a possible application of such a control
scheme to suppression of a pathological neural activity. In
this respect it is important that after the suppression is
achieved the intervention into the system is minimal, i.e., the
control is noninvasive. We note that the term “noninvasive”
has different meanings in control theory and in neuroscience.
Our suppression scheme is noninvasive in the sense that the
feedback signal tends to zero, or generally speaking to the
noise level, as soon as the suppression is achieved. However,
the technique remains invasive in the sense that it requires
constant stimulation via implanted electrodes. This “nonin-
vasiveness” is common also for other applications of delayed
feedback control, i.e., for stabilization of periodic orbits em-
bedded into a chaotic attractor, suppression of spatial-
temporal chaos[17–22], and control of coherence of chaotic
systems[23].

The paper is organized as follows. In Sec. II we discuss
the current stage of the development of brain stimulation
techniques. In Sec. III we describe models of neural oscilla-
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tions which we use in the following simulations. Here we
also discuss and illustrate the onset of synchrony in neural
ensembles. In Sec. IV we present the numerical results illus-
trating the time-delayed feedback suppression in an en-
semble of globally coupled neural oscillators. In Sec. V we
present the theoretical description of our approach, as well as
a comparison of the theory and of the results of simulations
with the models of neural ensembles. Here we also discuss
and compare several forms of control. Finally, in Sec. VI we
discuss our results and present an outlook.

II. SUPPRESSION OF PATHOLOGICAL BRAIN
RHYTHMS BY ELECTRICAL STIMULATION

A. Electrical stimulation of brain structures

For a couple of decades the electrical stimulation of the
human brain has been used in pilot studies with the aim of
suppressing the pathological activity in epilepsy[8,9] and,
with more successful clinical applications, in Parkinson’s
disease[10]. This surgical procedure, called deep brain
stimulation(DBS), involves implanting of an electrode into
the subcortical structures for long-term stimulation by a pe-
riodic pulse train. In Parkinsonian patients, DBS at frequen-
cies greater than 100 Hz has been shown to relieve tremor as
well as other symptoms such as rigidity and dyskinesia. It
decreases tremor amplitude in a spectacular way; the illus-
tration of this effect with real data can be found on the Phy-
sioNet web page.2 The mechanism by which high frequency
DBS suppresses tremor and reduces other symptoms in Par-
kinson’s disease is unknown(cf. a discussion in[24]). The
parameters of the stimulation must be determined by trial
and error and readjusted with time. The efficiency of the
DBS is known to decrease with time due to the adaptation of
the brain to stimulation.

Another direction of research is related to experiments
with brain slices. In this context we mention the feedback
controlled dc stimulation reported in[25,26]; it was found
that it reduces epileptic activity. The experimentalists con-
clude that the stimulation changes the parameters of neurons,
reducing the excitability threshold.

B. Development of model-based stimulation techniques

The application of nonlinear and statistical methods to
DBS has been pioneered by Tass. Sophisticated techniques,
currently being developed, imply stimulation by precisely
timed pulses and are based on the hypothesized description
of the pathological activity in terms of synchronization in a
large neuronal population[4,27–32]. In particular, the model
of globally (all-to-all) coupled phase oscillators is used. The
main idea of the approach is to administer a pulse stimulus
which hits the synchronized cluster at a vulnerable phase and
in this way desynchronizes it. This final pulse can be pre-
ceded by a complex stimulus which entrains or resets the
population and thus allows one to determine precisely the
time instant for the application of the suppressing pulse. The
asynchronous state is unstable, and thus the desynchronized

cluster tends to synchronize again; this resynchronization can
be blocked by repeatedly delivering the same composite
stimulation.

An alternative approach, based on the assumption that
global couping coexists with the local one, uses several
(four) electrodes that stimulate at different sites with a phase
shift p /2 with respect to each other[32]. In this way, these
electrodes entrain subpopulations of neurons, so that four
synchronous clusters are formed. When the stimulation is
switched off, the clusters desynchronize; after some time the
population synchronizes to the one-cluster states again, and
stimulation should be switched on again, and so on[32].
Note that this approach goes beyond the model of globally
coupled populations and assumes some spatial structure of
the network. The details and variants of these techniques can
be found in the original publications.

Recently we have shown that collective synchrony in an
ensemble of globally coupled oscillators can be efficiently
controlled (enhanced or suppressed) by a delayed feedback
in the mean field[11]. The efficiency of the control was
tested on models of globally coupled Rössler oscillators, as
well as of Hindmarsh-Rose and Rulkov models of neuronal
oscillators. The ability of a delayed feedback to suppress the
collective rhythm suggests that this method might be consid-
ered as a possible approach to DBS in the case when a patho-
logical activity arises due to synchrony in a localized neu-
ronal population and can be measured. The discussion and
extension of this approach are the main goals of this paper.

III. BASIC MODELS OF NEURAL ENSEMBLES

A. Neural models

Analytical investigations of neuronal synchrony typically
exploit simple models of phase oscillators or integrate-and-
fire systems. In simulations of the dynamics of neural en-
sembles it is possible to use more realistic models like the
Hodgkin-Huxley one. However, we have to find a compro-
mise between computational efficiency and physiological
plausibility. Therefore in this work we use three different
neural models, choosing less detailed(but computationally
more efficient) models for time consuming simulations, and
vice versa.

For the introduction of our technique we have chosen the
Hindmarsh-Rose equations[33] which can be considered as
a physiologically realistic model of the Hodgkin-Huxley
type. The model reads

ẋ = y − x3 + 3x2 − z+ 3,

ẏ = 1 − 5x2 − y,

ż= 0.006f4sx + 1.56d − zg. s1d

For the chosen parameter values, the solution of the system
reminds the irregular(chaotic) bursting of neurons[see Figs.
3(c) and 3(d) below].

In order to model the dynamics of an ensemble of peri-
odically spiking neurons we use the Bonhoeffer–van der Pol
model2URL: www.physionet.org/physiobank/database/tremordb/
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ẋ = x − x3/3 − y + I ,

ẏ = 0.1sx + 0.7 − 0.8yd. s2d

The parameterI has the meaning of the synaptic current and
directly influences the spiking frequency.

For detailed numerical analysis of the feedback control of
very large ensembles, we have to restrict ourselves to the
usage of more simple but computationally efficient models.
For this purpose it is very convenient to use the phenomeno-
logical model, proposed by Rulkov[34], where a neuron is
described by a two-dimensional map:

xsn + 1d =
4.3

1 + x2snd
+ ysnd,

ysn + 1d = ysnd − 0.01fxsnd + 1g, s3d

wheren is the discrete time. As follows from Fig. 1 below,
each Rulkov neuron exhibits chaotic bursts.

B. Synchrony in neural populations

Pathologically large amplitude brain activity appears due
to a coordinated firing of a large number of neurons
[4,6,7,35]. In particular, it is hypothesized that collective
synchronous dynamics plays a mayor role in the pathology
of Parkinson’s disease; this viewpoint is partially supported
by microelectrode studies[35–38] as well as by analysis of
magnetic brain activity(magnetoencephalograms) followed
by current source density reconstruction[39,40].

Typically, in a neural population each unit interacts with
many other units. The collective dynamics of such a popula-
tion is usually described by the mean-field model which
assumes that the units are globally(all-to-all) coupled
[4,6,41,42]. As is well known, for sufficiently strong cou-
pling, such populations undergo the Kuramoto self-
synchronization transition[1,2,34,43–49].

Consider an ensemble ofN units (with N→` in the ther-
modynamic limit); coupling within each pair of units is
quantified by the parameterK. Each unit can be regarded as
driven by the forceKX, whereX=N−1oi=1

N xi is themean field
andxi is an observable of theith unit. The onset of synchro-
nization in the population with the increase of the coupling
parameterK beyond a critical valueKc manifests itself via
the appearance of nonzero(macroscopic) oscillations of the
mean field; on the contrary, the variance ofX is small (it

vanishes in the thermodynamic limit) if the coupling strength
is below the critical value,K,Kc. The synchronization tran-
sition is often considered in analogy to phase transitions,
with the variance ofX playing the role of the order parameter
[3].

The Kuramoto transition can take place in ensembles of
limit cycle oscillators, as in system(2), and also in the pres-
ence of noisy perturbations, as well as in ensembles of maps,
like (3) and of chaotic oscillators, like(1). The transition can
take place also in case of delaystint in the coupling between
the elements of the ensemble. This delay plays an important
role in the analysis of neural interactions(see, e.g.,
[6,12,50]).3 We illustrate the Kuramoto transition by an ex-
ample, considering coupled Rulkov models

xisn + 1d =
4.3

1 + xi
2snd

+ yisnd + KXsnd,

yisn + 1d = yisnd − 0.01fxisnd + 1g, s4d

wherei =1,… ,N and

Xsnd =
1

N
o
1

N

xisnd.

If the couplingK exceeds the critical valueKc<0.055, then
the neurons start to burst coherently, and a macroscopic
mean field appears(see the bold line in Fig. 1 for an example
computed forN=2000 andK=0.06).

The evolution of the mean field withK is illustrated in
Fig. 2 forN=104. We see that in the vicinity of the transition
the growth of the variance of the mean field varsXd is ap-
proximately linear, as expected for a transition that occurs
via the Hopf bifurcation. We note that detailed analysis of the
transition for very large ensemblessN=106d exhibits that the
bifurcation is subcritical. However, the jump at the transition
is very small, and therefore it is not seen in the smallersN

3We call this delayinternal to distinguish it from the delayT in
the control loop, implemented in our technique. Usuallytint!T,
whereT is the period of collective oscillations, whileT can be of
order ofT or larger. Generally, these two quantities are not related.

FIG. 1. (Color online) Chaotic bursting of individual neurons in
the Rulkov model(3) [time course of two units is shown by solid
(black) and dotted(red) lines] and the evolution of the mean field in
the globally coupled ensemble of 2000 of such neurons[bold (blue)
line].

FIG. 2. Transition to the macroscopic mean field in the model
(3). The transition is smeared because of the finite-size effect. In the
vicinity of the transition point(see inset) the variance of the mean
field varsXd increases approximately linearly.
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=104d ensemble. Note also that in a finite-size population the
mean field is not zero for the subthreshold coupling, but
fluctuates with the variance,1/N and the transition is
smeared[51].

IV. SUPPRESSION OF COLLECTIVE SYNCHRONY:
NUMERICAL ILLUSTRATION

A. Suppression with minimal intervention

For the introduction of the delayed feedback control of
collective synchrony we consider suppression of the mean
field in an ensemble ofN=10 000 identical Hindmarsh-Rose
neurons[Eqs. (1)] in the regime of chaotic bursting. The
dynamics of the ensemble is described by the following set
of equations:

ẋi = yi − xi
3 + 3xi

2 − zi + 3 +KX + Kf„Xst − Td − Xstd…,

ẏi = 1 − 5xi
2 − yi ,

żi = 0.006f4sxi + 1.56d − zig, s5d

whereX=N−1oi=1
N xi is the mean field, and the termsKX and

Kf(Xst−Td−Xstd)=C describe the global coupling and the
feedback control, respectively.

The results are presented in Fig. 3 for the strength of the
internal coupling K=0.08. The feedback control was
switched on att0=5000, i.e.,Kf =0 for t, t0 and Kf =0.036
for tù t0; the delay time isT=72.5. Here the panels(a) and
(b) show the mean field and the control signal, respectively.
It is clearly seen that switching on of the feedback results in
a quick suppression of the mean field in the ensemble, so that
only small noiselike fluctuations remain(we recall that the
mean field models here the pathological brain activity). It is
important that the control signal decays rapidly and then the
asynchronous state of the ensemble is maintained by feeding
back a very weak signal. Another important feature of the
technique is illustrated in the panels(c) and (d) where we
show the bursting dynamics of two neurons before(c) and
after (d) the feedback was switched on. One can see that the
dynamics of individual units barely change; however, they
burst incoherently and therefore produce no macroscopic os-
cillation. Thus, the feedback control suppresses the collective
synchrony in the ensemble without suppressing the firing of
individual neurons and maintains this state with a weak in-
tervention. Simulations with the Rulkov model[11] demon-
strate that the variance of the field fluctuations in the sup-
pressed state decrease with increasing ensemble size as
1/ÎN. This means that for very large ensembles the control
signal tends to zero, and therefore the control isnoninvasive.

B. Domains of control

With the previous example we demonstrated that the de-
layed feedback can be exploited to suppress the mean field
oscillation. Now we discuss the influence of the parameters
of the control scheme. First of all we emphasize that the
control can be organized in different ways. In particular, be-
sides the control termC,Xstd−Xst−Td, as in the previous

section, one can use control terms in the form ofC,Xst
−Td. We call these delayed feedback schemesdifferentialand
direct control, respectively. In the following we also discuss
multiple delaycontrol (see Sec. V D). Generally, other forms
of control are possible as well, e.g., nonlinear feedback
schemes, or feedback schemes using the delayed derivative,
and so on.

Both direct and differential control schemes are param-
etrized by the delay timeT and the feedback coefficientKf.
Moreover, the phase shiftb that determines how the signal
acts on the system is also important. We note thatT andKf
can be adjusted in the experimental implementation, and
therefore are considered further as free parameters. On the
contrary, the phase shiftb depends on the way the irradiated
control signal influences the individual neurons, and cannot
be easily determined. We illustrate the influence of these pa-
rameters by the following example.

We consider an ensemble of Bonhoeffer–van der Pol os-
cillators, coupled via the mean field in thex variable:

ẋi = xi − xi
3/3 − yi + I i + KX + KfscosbdXst − Td,

ẏi = 0.1sxi + 0.7 − 0.8yid − KfssinbdXst − Td. s6d

Note that the delayed feedback here generally affects bothx
andy variables; the relative strength of these actions is gov-
erned by the phase shiftb. The elements of the ensemble are
not identical: the parameterI i is takenI i =0.6+s, wheres is
Gaussian distributed with zero mean and 0.1 rms value. We
have performed the simulation of the system(6) for N=104,
for several values of the parameterb, and for regularly var-
ied Kf and T. For each set of parameters we compute the
variance of the mean field and thesuppression coefficient S
=fvarsXd /varsXfdg1/2, whereX andXf are the mean fields in
the absence and presence of the feedback, respectively. In the

FIG. 3. (Color online) (a) Suppression of the mean fieldX in the
ensemble of 10 000 Hindmarsh-Rose neurons[Eqs. (5)]. The de-
layed feedback is switched on att=5000.(b) The control signalC
=« f(Xst−Td−Xstd) quickly decays to the noise level and the de-
sired, asynchronous, state of the system is maintained with a mini-
mal intervention.(c), (d) Synchronous and asynchronous bursting
of two neurons in the absence and in the presence of the feedback,
respectively.
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simulation we usedN=104 elements. In Fig. 4 we show the
dependence of the suppression coefficientS on T , Kf.

From Fig. 4 we conclude that suppression is observed for
relatively large parameter domains, which we call domains
of control. The position of these domains along theT axis
depends on the phase shiftb; in this example the domains
are found around const+nT/2, wheren is an integer. One
can also see that the maximal value of the suppression factor
depends onb as well. In the next section we develop a
theory that describes the domains of control.

V. SUPPRESSION OF SYNCHRONY IN A GLOBALLY
COUPLED ENSEMBLE: THEORY

Qualitatively, the effect of suppression can be explained
as follows (for definiteness, we consider now direct feed-
back): as the mean fieldX is (approximately) T periodic, then
the feedback withT<nT/2 , n=1, 2,… either reduces or in-
creases, depending on the sign ofKf, the driving to each
element of the ensemble. Respectively, this results in a sup-
pression or an enhancement of collective synchrony, quanti-
fied by the variance of the mean field.

For the theoretical analysis of the control domains we
make use of the fact that the synchronization transition in a
globally coupled ensemble can be regarded as a Hopf bifur-
cation for the mean field. We note, however, that the transi-
tion can be more complex(see[52–56]). It is also known
that both sub- and supercritical Hopf bifurcations are pos-
sible. In the following we consider the most frequent case of
the supercritical(soft) bifurcation.

A. The amplitude equation

In order to describe the effect of the time delay on this
bifurcation, we first write the model amplitude equation(cf.

[2,49]) for the dynamics of the complex mean fieldA:

Ȧ = s− «c + iv8dA + s« + i«8dA + sE + iE8dL„Astd, Ast − Td…

− z8uAu2A. s7d

Here the terms−«c+ iv8dA describes the decay of the mean-
field oscillation without the global coupling and delayed
feedback, due to the tendency of the ensemble to desynchro-
nize because of a distribution of frequencies and/or noise/
chaos in individual elements. The terms«+ i«8dA describes
the effect of the global coupling; in general the factor«
+ i«8 is complex. A similar termsE+ iE8dL(Astd , Ast−Td) de-
scribes the effect of the delayed feedback of the mean field;
here the operatorL has a different form for different feed-
back schemes to be considered below. Finally, the last non-
linear term describes the saturation of the mean-field oscilla-
tion for largeA.

Before proceeding with the analysis of Eq.(7) we discuss
the treatment of the delayed term. If the goal of the analysis
is the determination of the frequency of a periodic solution,
then the delay can be substituted by an equivalent phase
shift. However, for the analysis of stability this can be done
only if the delay is small compared to the oscillation period
and no additional instability appears. The delay in the exter-
nal feedback loop is not small, and its replacement by the
phase shift drastically changes the stability properties.
Hence, one should consider a delayed equation which is the
infinite-dimensional system.(The same consideration is valid
for internal delays, not considered here.)

It is convenient to reduce the number of parameters in Eq.
(7), normalizing the time by the frequency of oscillation in
the absence of delayed feedback, i.e., byv=v8+«8. Then
Eq. (7) takes the form

Ȧ = sj + idA + « fe
−iaL„Astd, Ast − td… − zuAu2A. s8d

Here the derivative is taken over the dimensionless timet8
=vt (below we use the old notation for time) and the nor-
malized time delay becomest=vT. The parameterj=s«
−«cdv−1 is the dimensionless growth rate of oscillations, and
z=z8v−1. With these units the period of oscillations of the
uncontrolled system isT=2p. Next, we have introduced the
dimensionless feedback factor according to« fe

−ia=sE
+ iE8dv−1. Note that the phase shifta is determined by the
organization of the global coupling in the ensemble and by
the properties of individual units. It is important to mention
that even if the internal coupling and the delayed feedback
enter the equations in a similar way, as in system(6) with
b=0, the shifta in the corresponding amplitude equation is
generally nonzero.

In the following we assume that the coupling is supercriti-
cal, «−«c=j.0, i.e., a macroscopic mean field exists. In
order to describe the suppression of this field, we should
determine which values of the feedback parameters« f , t,
anda ensure the stability of the asynchronous stateA=0 in
the controlled system(7). Reduction of the description of the
ensemble dynamics to the amplitude equation(8) makes the
problem similar to the analysis of the dynamics of a limit
cycle oscillator with a delayed feedback[57]. However, the

FIG. 4. (Color online) Domains of suppression for the
Bonhoeffer–van der Pol ensemble(6). Three panels show the sup-
pression factorS in a gray(color) scale coding. The phase shiftb
that determines how the control signal acts on the elements of the
ensemble changes from top to bottom:b=0, −p /10, −p /5. The
delay is normalized by the average periodT of the mean-field os-
cillation without control.
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possibility of such reduction and the ability of the considered
delayed feedback to control mean-field oscillations without
affecting oscillations of individual units are highly nontrivial.
Next, the stability analysis of Eq.(7) remains to be done
separately for differentL(Astd , Ast−td). Below we consider
and compare several types of delayed feedback control
L(Astd , Ast−td).

B. Direct control

We start with the control term of the formL(Astd , Ast
−td)=Ast−td; such a control can be called “direct.” In this
case the linearized Eq.(8) at the asynchronous stateA=0
reads

Ȧ = sj + idA + « fe
−iaAst − td. s9d

In order to analyze the stability of this state we substitute in
Eq. (9) A=A0e

lt, and obtain the characteristic equation(cf.
[57])

l = j + i + « fe
−iae−lt. s10d

The solution of Eq.(10) can be expressed via the Lambert
function W:C→C, which is defined as the solution of the
equationWszdeWszd=z [58]. Indeed, rewriting Eq.(10) as

tsl − j − id = t« fe
−iae−lt, s11d

taking the exponents of both sides, and multiplying by
t« fe

−ia, we obtain

t« fe
−iae−sj+idt = t« fe

−iae−ltet«fe
−iae−lt

.

Comparing with the definition of the Lambert function we
obtain Wst« fe

−iae−sj+idtd=t« fe
−iae−lt, which together with

Eq. (11) gives

l = j + i + t−1Wst« fe
−iae−sj+idtd. s12d

The condition Resld,0 determines the domains of stability
on the parameter planet , « f. (Note that limt→0l
=j+ i +« fe

−ia.)
We illustrate the theoretical results in Figs. 5 and 6. First

we analyze the dependence of the control domains on the
third parameter of the control, namely on the phase anglea.
One can see that with increase ofa the domains of control
are shifted along thet-axis. The domains are positioned
aroundt=const+n/2T, where the constant isa-dependent
and vanishes fora=0. Note that fora=p /2 there exists no
domain att<0, so that the “trivial” feedback without delay
does not suffice.4 Negative values ofa result in the shift of
the control domains to larger delays, in accordance with the
numerical results shown in Fig. 4.[We recall that if the phase
shift b in Eqs.(6) is zero, the effective phase shift is gener-
ally nonzero. This explains why the control domain in the
upper panel of Fig. 4 is shifted with respect tot=T/2.]

Next, we analyze the impact of the only parameter of the
(normalized) model equation that characterizes the con-

trolled system, namely, the(normalized) incrementj. It de-
scribes how far the ensemble is from the transition point. As
expected, the more unstable is the system, the fewer domains
of suppression exist and the smaller they are(see Fig. 6). The
possible number of domains is estimated in the Appendix.

For the (semi)quantitative comparison of the theoretical
description within the framework of the model equation(8)
with the numerics we consider the Rulkov model(4) with the
control termKfXsn−Td added to the right-hand side of the
first equation. We compute the variance of the mean field for
three values of the internal coupling,K=0.056,K=0.06,K

4Indeed, with the no-delay feedback the critical value of« f

providing suppression is given by« f =−j /cosa, i.e., « f → ±`
with a→p /2.

FIG. 5. Domains of control for the direct control scheme, for
different phase shifta and constant normalized incrementj=0.02.
T is the period of mean-field oscillation in the absence of the
feedback.

FIG. 6. Domains of control for the direct control scheme in
dependence on the stability of the system for constant phase shift
a=0. The larger is the instability of the system, the smaller are the
domains of control and the stronger feedback is required: suppres-
sion of synchrony is possible foru« fuùj.
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=0.064, and for a range of feedback parametersT ,Kf. The
size of the ensemble isN=104. Next, from Fig. 2 we estimate
the level of noise in the system, i.e., the variance of the mean
field for subcritical coupling, to be 0.003. We use this value
as a cutoff level: if the variance of the mean field is larger
than this value, the system is considered to be unstable. The
obtained stability domains are shown as filled regions in Fig.
7. Next we have to estimate the parameters of the equivalent
model equation for the Rulkov model(3). From the bifurca-
tion curve (Fig. 2) we estimate the critical coupling asKc
=0.055. The frequency of the mean field can be easily esti-
mated asv=2p /60. Taking the increment in the model equa-
tion proportional to subcriticality in the full model, i.e.,cj
=K−Kc, we finish with two unknown parameters of the
model equation that should be determined by a fit. These
parameters arec and the equivalent phase shifta. This can
be easily done, because these parameters determine the po-
sitions of the stability domains along the vertical and hori-
zontal axes, respectively. The results forc=1.8 and a
=p /18 shown in Fig. 7 by bold(red) lines demonstrate a
good correspondence of the theory and numerics.

To conclude the consideration of the direct control
scheme, we discuss whether the controlled system can ex-
hibit bistability. Indeed, generally speaking, for some param-
eter values the stable asynchronous and synchronous solu-
tions can coexist(see[11]). To analyze this, we look for the
domain of existence of the periodic solution Reiv0t. Substi-
tuting this expression into Eq.(8) with the control term as in
Eq. (9), we obtain

zR2 = j + « fcossv0t + ad,

1 = v0 + « fsinsv0t + ad. s13d

The periodic solution exists ifR2ù0, which leads to the
equations for the border of the domain[cf. Eqs.(A2)]. Thus
we can conclude that there is no bistability in the system, and
within the domains of control the mean-field oscillations can
always be suppressed.

C. Differential control

In this section we consider Eq.(8) with the differential
control termL(Astd , Ast−td)=Ast−td−Astd resulting in the
linearized equation

Ȧ = sj + idA + « fe
−iafAst − td − Astdg. s14d

Note that such a control is used in the Pyragas method of
chaos suppression; there it is important thatt equals the
period of an unstable periodic orbit of the chaotic attractor,
while in our caset is a free parameter. The normalized char-
acteristic equation reads

l = j + i + « fe
−iase−lt − 1d, s15d

and its solution is expressed via the Lambert function as

l = j − « fcosa + is1 + « fsinad

+ t−1Wst« fe
−iae−fj−«fcosa+is1+«fsin adgtd. s16d

The domains of control are shown in Figs. 8 and 9. Compar-
ing the results for direct and differential control schemes, we
mention (i) for small a the differential control provides
larger domains of control; however, the number of domains
is smaller as the control can be performed for positive feed-
back only; (ii ) for a close top /2 both the direct and the
differential schemes are approximately equally effective with
regard to the parameter range where control is possible;(iii )
similarly to the direct control, the differential scheme pro-
vides no bistability.

In order to conclude the comparison of the two schemes,
we shall determine the degree of stability within the domains
of control; the latter is quantified by the absolute value ofl.
Indeed, in the presence of noise the “depth” of the stability
domain determines the variance of the fluctuations in the
suppressed state. This comparison is shown in Fig. 10. We
see that for smalla the differential control provides stronger
stability.

FIG. 7. (Color online) Comparison of the numerical analysis of
the stability domains of the feedback controlled Rulkov model(3)
(filled regions) with the stability domains for the equivalent model
equation(8) [bold (red) lines] for three different values of the in-
ternal couplingK (see text). FIG. 8. Domains of control for the differential control scheme,

for different j ; a=0.
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D. Multiple-delay control

In this section we explore whether we can improve sup-
pression of collective synchrony by exploiting multiple-
delay control. For this purpose we modify the multiple-delay
version of the Pyragas control suggested by Socolaret al.
[59]. We write the control term asL=Bst−td, where the
auxiliary signalBstd obeys

Bstd = s1 − mdAstd + mBst − tmd, s17d

here the delaytm and coefficient 0,m,1 are free param-
eters. Implementation of such a control requires two delay
lines: the mean fieldA should be stored on the intervalt−t,
and the auxiliary signalBstd should be stored on the interval
t−tm−t.

The control scheme(17) is equivalent to a control with
infinitely many delay lines. Indeed, substitutingBst−tmd in
the expression(17) and iterating such substitutions, we ob-
tain

Bst − td = s1 − mdfAst − td + mAst − tm − td

+ m2Ast − 2tm − td + m3Ast − 3tm − td + ¯ g.

The characteristic equation of the linearized Eq.(8) takes the
form

l = j + i + « fe
−iae−lts1 − mds1 + me−ltm + m2e−2ltm + ¯ d

= j + i +
« fs1 − mde−ia−lt

1 − me−ltm
. s18d

The solution of this equation cannot be expressed in terms of
the Lambert function. Introducing the notationl=g+ iw and
separating real and imaginary parts we find the solution of
Eq. (18) in a parametric form:

t = w−1FarctanS sw − 1dfme−gtmcosswtmd − 1g − sg − jdme−gtmsinswtmd
sg − jdf1 − me−gtmcosswtmdg − sw − 1dme−gtmsinswtmdD + np − aG ,

« f = egt sg − jdf1 − me−gtmcosswtmdg − sw − 1dme−gtmsinswtmd
s1 − mdcosswt + ad

. s19d

Settingg=0 we obtain the borders of control domains. The
results are shown in Fig. 11. For better comparison, in the
upper panel we show the domains form=0, i.e., for the one-
delay direct control scheme. The bold(red), solid (blue), and
dashed(black) contour lines correspond to Resld=0,−0.1,
and −0.2, respectively. In the lower panel we show the simi-
lar contour lines form=0.3; other parameters are the same
for the two cases:j=0.1,a=0. We see that control can be

indeed enhanced by using multiple delays, although the im-
provement is not drastic.

VI. DISCUSSION AND OUTLOOK

In this paper we considered in detail the suppression of
the mean field in an ensemble of oscillators from the view-
point of a possible application in neuroscience. Particularly,

FIG. 9. Domains of control for the differential control scheme,
for different a ; j=0.02.

FIG. 10. Profiles ofl for direct (solid) and differential(bold)
control scheme;j=0.02,« f =0.1.
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we suggest that time-delayed feedback can be used for the
purposes of deep brain stimulation, namely, for suppression
of pathological brain rhythms. The final goal is the develop-
ment of a device that will implement such a control via mi-
croelectrodes implanted into the brain. More realistically, we
hope that the technique will be of interest to neuroscientists
working on neural oscillations in brain slices. We support our
idea by numerical simulation of the ensemble dynamics us-
ing mathematical neuronal models of different complexity, as
well as by a theoretical treatment. In our consideration we
exploited the idealized model of globally coupled neurons;
however, numerical analysis of randomly coupled networks
indicates that our approach works in this case as well(this
study will be reported elsewhere). Also, the method works
even when the interaction between units involves some re-
tardation due to the finite velocity of the signal transmission
between neurons[6,12,13]. We note that we did not analyze
in detail the influence of the different types of interaction
between individual units of the network, which may be of
chemical or electrical origin, and may occur via the gap junc-
tions or via synapses. Properties of the coupling are certainly
important for a quantitative description of the synchroniza-
tion transition in a network; however, this transition gener-
ally occurs via the Hopf bifurcation and therefore we believe
that our technique is applicable for different types of neu-
ronal interaction.

We have performed a comparative analysis of two control
schemes that we call direct and differential control. The im-
portant difference between these two techniques is that the
first one is generally invasive, in the sense that the control
signal in the suppressed state tends to a constant, whereas the
latter technique is noninvasive, i.e., the control tends to zero.
(In a noisy ensemble of finite size this means that the control
signals fluctuate around a constant or zero, respectively.) The

possibility to implement the noninvasive control is very im-
portant from the viewpoint of practical implementation of
this approach. Indeed, for noninvasive control the signal that
is fed into the system is large only for a rather short time(cf.
Fig. 3), before the mean-field oscillation is suppressed. After
this, the signal that is required to maintain the normal state of
the neuronal network has the level of noisy fluctuations in
the system. Hence, the feedback control can be exploited for
long periods of time, because both the intervention into the
tissue and energy consumption from the device battery are
minimized. Next, we have shown that using two delay lines
one can improve the efficiency of the control, by enlarging
the control domains in the parameter plane and by achieving
stronger stability of the desynchronized state within these
domains.

Another advantage of the delayed-feedback suppression is
that this scheme allows one to easily overcome the effect
known in engineering as latency. Indeed, in a practical appli-
cation it can happen that the mean field is registered with
some retardation timetm. For example, the collective rhythm
of a neuronal population could be more conveniently mea-
sured by surface electrodes. In this case the measured signal
can be a delayed version of the local electric field due to
finite conduction velocity along the neural pathways. Clearly,
the suppression will work in this case as well; the delay time
in the external feedback loop should be chosen in such a way
that the resulting delayt+tm lies within a domain of sup-
pression. There is another issue of practical importance: usu-
ally the observed mean field(local field potential as it is
called in neurodynamics) has to be filtered before being used
for feedback control. We expect that such a filtering does not
significantly reduce the feasibility of the control; however,
this aspect needs special consideration, to be reported else-
where.

In our discussion of the pathological synchrony in a sub-
system of the brain we followed the commonly accepted
approach that this synchrony(and, hence, pathological activ-
ity) develops due to an increase of the interneuron coupling
(parameterK in our models). We recall now that for certain
parameters the delayed feedback can cause a reverse effect
and bring instability into a stable ensemble, thus enhancing
the mean-field oscillation(see[11]). We speculate that this
effect might be a cause of a pathological brain activity: the
neural network where this activity is generated cannot be
considered as isolated from other regions of the brain. In-
deed, this network receives the signals from other functional
subsystems of the central and peripheral neural systems. In
particular, there are some natural, internal feedback loops
characterized by their own amplifications and delays. We can
assume that some(pathological) change of the parameters of
these loops can result in excitation of mean-field oscillation.
This would mean that suppression of pathological rhythms
can be achieved by affecting(e.g., by a medication) these
internal loops.

To conclude, we mention some directions of ongoing re-
search. A practical method for determination of the appropri-
ate parameters of the feedback controlT and K in a real
experiment is still lacking. A possible solution here might be
implementation of a nonlinear optimization scheme. Next, an
important extension of the presented technique would be

FIG. 11. Efficiency of the multiple-delay control scheme. Upper
panel shows the borders of two control domains for the one-delay
direct control scheme[bold (red) lines]. Lower panel shows these
borders for the multiple-delay control. Solid(blue) and dashed
(black) contour lines correspond to Resld=−0.1 and −0.2. Note that
the second delay makes the control domains larger and more
“deep.”
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consideration of the spatial effects that are neglected in the
model of global coupling. For practical implementation it is
also necessary to analyze in detail the suppression of multi-
mode instabilities. Indeed, generally, an ensemble of globally
coupled elements can have many modes of instability[6];
moreover, the delayed feedback may bring new instability.
Preliminary analysis of the delayed-feedback control in an
ensemble of noisy phase oscillators[11] shows that the sta-
bility of different modes can be treated separately, and the
domains of overall stability can be obtained as the intersec-
tions of the stability domains for all modes. A very important
topic of future study is a comparison and possibly a combi-
nation of this approach with the phase resetting techniques
developed by Tass[4,27–32].
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APPENDIX: ESTIMATION OF THE NUMBER
OF CONTROL DOMAINS

In order to estimate the number of domains for the
given parameters of the characteristic equation(here we
takea=0)

l = j + i + « fe
−lt, sA1d

we write l= in and obtain two real equations for the borders
of the stability domains(see[57]):

« fcosnt = − j,

« fsinnt = 1 −n. sA2d

Squaring and summing these equations gives«2=j2+s1
−nd2. Dividing the equations gives tannt=sn−1d /j. Consid-

ering separately the cases 1ùn and 1,n, we end with the
expression for two border lines(they describe two modes of
instability)

t =
arctans7Î« f

2 − j2/jd + np

1 −Î« f
2 − j2

.

Let us now find the maximal number of suppression re-
gions. To do this, note that a region disappears if both border
lines [which can be described by some functionst= f1,2s« fd]
have at the tip of the region, i.e., in the points« f = uju, the
derivativedt /d« f =0. The following relations are satisfied at
the tip: n=1, t /T=n/2, wheren=0, 1, …, or tv=np. To
find the derivative, let us derive Eqs.(A2) with respect to« f.
We get

cosnt − efsinntS dn

d« f
t + n

dt

d« f
D = 0,

sinnt + efcosntS dn

d« f
t + n

dt

d« f
D = −

dn

d« f
. sA3d

Multiplication of the first equation by cosine and the second
by sine and summation yields

1 = −
dn

d« f
sinnt.

Then from the first equation we get

cosnt + « ft − « fsinsntdn
dt

d« f
= 0.

Finally, we obtain

dt

d« f
=

cosnt + « ft

« fnsinnt
.

The required condition is then cosnt+« ft=0, or, if we take
into account the values at the tip,tj=pnj=1. Hence, sup-
pression is possible for the number of regionsNr =fspjd−1g,
where[ ] denotes the integer part.
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