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Delayed feedback control of collective synchrony: An approach to suppression
of pathological brain rhythms
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We suggest a method for suppression of synchrony in a globally coupled oscillator network, based on the
time-delayed feedback via the mean field. Having in mind possible applications for suppression of pathological
rhythms in neural ensembles, we present numerical results for different models of coupled bursting neurons. A
theory is developed based on the consideration of the synchronization transition as a Hopf bifurcation.
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I. INTRODUCTION intervention caused by stimulation, e.g., by designing tech-

L o . niques which allow supression of the pathological rhythm by
Investigation of synchronization in large populations Ofweak though precisely timed puls.

interacting oscilllatory e!ements is an intensively developing | the present paper we systematically analyze and further
branch of nonlinear sciendd—9], relevant to many prob- geyelop the time-delayed feedback control of the collective
lems of physics, chemistry, and life sciences, in particular, t%ynchrony in a complex oscillator network, suggested in our
neuroscience. For example, synchrqnization can occur in arﬁ:evious publication[11]. Generally speaking, there are
rays of lasers and Josephson junctions, where this phenorgs,ny situations where synchrony appears or disappears with
enon may play a constructive role for generation of a strongajation of the system parameters, type of coupling, etc. In
coherent field. In other cases synchronization may be hamyicylar, it is well known that the delayed interaction be-
ful; an illustrative example is the excitation of the Ieft-to- yyeen two or many oscillators can suppress or facilitate the
right swaying motion of London's Millennium Bridge ob- gynchronyi6,12-14, as well as result in oscillation quench-
served on its opening dayThis motion appeared due to ing [15,16. However, these effects of delay are hardly suit-

mutual synchronization of the steps of hundreds of pedestrizp o for the purposes of control, because typically the equa-

ans. To prevent the onset of such synchronization, th_e bridg@ons and parameters of the system are unknown and cannot
has been reconstructed in such a way that the damping of ifg, 5ccessed. The advantage of the particular set{iplpfs
corresponding oscillatory que was essentlal[y increased. Ip, the usage of amxternaldelayed loop, a few parameters of
many cases, when such a direct intervention into the systefjich (delay time, feedback strengtitan be easily con-
is not possmle_, itis never?heless desirable to pontrol th_e SYNrolled by an experimentalist. Contrary to many other prob-
chronous motion, in particular, to suppress it, when it apjems where a suppression of synchrony has been observed,
pears. . . the suppression with the method considered here requires
An important example of this class is related to the col-pgjiher information on the details of the individual oscillators
lective dynamics of neuronal populations. Indeed, synchrog g iheir interactions nor access to their parameters. Only the
nization of individual neurons is believed to play the crucial y,5cr6scopic properties of the collective dynamics determine
role in the emergence of pathological rhythmic brain activity,, feasibility of the control.
in Parkinson’s disease, essential tremor, and epilepsies; a dé-\ye concentrate on a possible application of such a control

tailed qliscussion of t_his topic and numerous citations can Pecheme to suppression of a pathological neural activity. In
found in [4,6,7. Obviously, the development of techniques yhis respect it is important that after the suppression is

for suppression of the undesired neural synchrony constituteg jeved the intervention into the system is minimal, i.e., the
an important clinical proplem. Te(.:hnlcally,. this problem CaNcontrol is noninvasive. We note that the term “noninvasive”
be solved by means of implantation of microelectrodes intq,,5 gifferent meanings in control theory and in neuroscience.
the impaired part of the brain with subsequent electric stimugy suppression scheme is noninvasive in the sense that the

lation through these electrodgg-10. However, in spite Of  faadnack signal tends to zero, or generally speaking to the

successful experimental studies followed by clinical applicay,ige level, as soon as the suppression is achieved. However,

tions, the physiological mechanisms of such stimulation rey,q technique remains invasive in the sense that it requires
main unclear and the development of effective stimulation,ongtant stimulation via implanted electrodes. This “nonin-
techniques is a challenging problem of neuroscience and bigz,jyeness” is common also for other applications of delayed
logical physics. In particular, it is important to minimize the ¢eeqhack control, i.e., for stabilization of periodic orbits em-
bedded into a chaotic attractor, suppression of spatial-
temporal chao§l7-27, and control of coherence of chaotic
*URL: www.agnld.uni-potsdam.danros systemq23].
TURL: www.stat.physik.uni-potsdam.dpikovsky The paper is organized as follows. In Sec. Il we discuss
The corresponding video can be found on the web page of théhe current stage of the development of brain stimulation
firm that constructed the bridge: www.arup.com/MillenniumBridge/ techniques. In Sec. Il we describe models of neural oscilla-
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tions which we use in the following simulations. Here we cluster tends to synchronize again; this resynchronization can
also discuss and illustrate the onset of synchrony in neurdde blocked by repeatedly delivering the same composite
ensembles. In Sec. IV we present the numerical results illusstimulation.

trating the time-delayed feedback suppression in an en- An alternative approach, based on the assumption that
semble of globally coupled neural oscillators. In Sec. V weglobal couping coexists with the local one, uses several
present the theoretical description of our approach, as well g$our) electrodes that stimulate at different sites with a phase
a comparison of the theory and of the results of simulationshift 77/2 with respect to each oth§B2]. In this way, these
with the models of neural ensembles. Here we also discusslectrodes entrain subpopulations of neurons, so that four
and compare several forms of control. Finally, in Sec. VI wesynchronous clusters are formed. When the stimulation is

discuss our results and present an outlook. switched off, the clusters desynchronize; after some time the
population synchronizes to the one-cluster states again, and
Il. SUPPRESSION OF PATHOLOGICAL BRAIN stimulation should be switched on again, and so[88].
RHYTHMS BY ELECTRICAL STIMULATION Note that this approach goes beyond the model of globally
_ ) . ) coupled populations and assumes some spatial structure of
A. Electrical stimulation of brain structures the network. The details and variants of these techniques can

For a couple of decades the electrical stimulation of théoe found in the original publications.
human brain has been used in pilot studies with the aim of Recently we have shown that collective synchrony in an
suppressing the pathological activity in epileg®/9] and, ensemble of globally coupled oscillators can be efficiently
with more successful clinical applications, in Parkinson’scontrolled(enhanced or suppresgeuy a delayed feedback
disease[10]. This surgical procedure, called deep brainin the mean field[11]. The efficiency of the control was
stimulation(DBS), involves implanting of an electrode into tested on models of globally coupled Réssler oscillators, as
the subcortical structures for long-term stimulation by a pewell as of Hindmarsh-Rose and Rulkov models of neuronal
riodic pulse train. In Parkinsonian patients, DBS at frequenoscillators. The ability of a delayed feedback to suppress the
cies greater than 100 Hz has been shown to relieve tremor &9llective rhythm suggests that this method might be consid-
well as other symptoms such as rigidity and dyskinesia. lered as a possible approach to DBS in the case when a patho-
decreases tremor amplitude in a spectacular way; the illudogical activity arises due to synchrony in a localized neu-
tration of this effect with real data can be found on the PhyJonal population and can be measured. The discussion and
sioNet web pagé.The mechanism by which high frequency extension of this approach are the main goals of this paper.
DBS suppresses tremor and reduces other symptoms in Par-
kinson’s disease is unknowf. a discussion irj24]). The
parameters of the stimulation must be determined by trial
and error and readjusted with time. The efficiency of the A. Neural models

DBS is known to decrease with time due to the adaptation of Analytical investigations of neuronal synchrony typically

the brain to ;tlmqlatlon. . . exploit simple models of phase oscillators or integrate-and-
Another direction of research is related to experiments; o systems. In simulations of the dynamics of neural en-

with brain slices. In this context we ment'iqn the feedbacksempyes it is possible to use more realistic models like the
controlled dc stimulation reported if25,29; it was found Hodgkin-Huxley one. However, we have to find a compro-

that it reduces _eplleppc activity. The experimentalists CON-ise between computational efficiency and physiological
clude that the stimulation changes the parameters of neuro

. L n[§I'ausibility. Therefore in this work we use three different
reducing the excitability threshold. neural models, choosing less detailgmit computationally
more efficient models for time consuming simulations, and

B. Development of model-based stimulation techniques vice versa.

The application of nonlinear and statistical methods to For the introduction of our technique we have chosen the
DBS has been pioneered by Tass. Sophisticated techniquddindmarsh-Rose equatiofi83] which can be considered as
currently being developed, imply stimulation by precisely@ physiologically realistic model of the Hodgkin-Huxley
timed pulses and are based on the hypothesized descriptidP€. The model reads
of the pathological activity in terms of synchronization in a
large neuronal populatiof#,27—33. In particular, the model
of globally (all-to-all) coupled phase oscillators is used. The

Ill. BASIC MODELS OF NEURAL ENSEMBLES

x=y-x+3x2-z+3,

main idea of the approach is to administer a pulse stimulus y=1-5¢-y,
which hits the synchronized cluster at a vulnerable phase and _
in this way desynchronizes it. This final pulse can be pre- z=0.0064(x+ 1.56 - z]. (&8)]

ceded by a complex stimulus which entrains or resets th% .
) . : or the chosen parameter values, the solution of the system
population and thus allows one to determine precisely the

time instant for the application of the suppressing pulse. Th [eminds the irregulagchaotig bursting of neurongsee Figs.

asynchronous state is unstable, and thus the desynchroniz%g;) and 3d) below]. . .
In order to model the dynamics of an ensemble of peri-

odically spiking neurons we use the Bonhoeffer—van der Pol
2URL: www.physionet.org/physiobank/database/tremordb/ model
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FIG. 1. (Color online Chaotic bursting of individual neurons in
the Rulkov mode(3) [time course of two units is shown by solid . . .
(black) and dottedred) lines] and the evolution of the mean field in 0'%_00 0.05 ‘ 0.10 015 ' 0.2¢
the globally coupled ensemble of 2000 of such neufbitd (blue) K
line].
FIG. 2. Transition to the macroscopic mean field in the model
- 33 | (3). The transition is smeared because of the finite-size effect. In the
X=EX=XIs—y+l, vicinity of the transition poinisee insetthe variance of the mean
. field var(X) increases approximately linearly.
y=0.1x+0.7-0.8). (2
The parameter has the meaning of the synaptic current andvanishes in the thermodynamic limif the coupling strength
direcﬂy influences the Sp|k|ng frequency_ is below the critical valueik < KC' The SynChronlzatlon tran-

For detailed numerical analysis of the feedback control ofition is often considered in analogy to phase transitions,
very large ensembles, we have to restrict ourselves to th#ith the variance oK playing the role of the order parameter
usage of more simple but computationally efficient models/3I- N .

For this purpose it is very convenient to use the phenomeno- The Kuramoto transition can take place in ensembles of
logical model, proposed by Rulkdid4], where a neuron is limit cycle oscillators, as in systei2), and also in the pres-

described by a two-dimensional map: ence of noisy perturbations, as well as in ensembles of maps,
like (3) and of chaotic oscillators, lik€l). The transition can
x(n+1) = 4.3 +y(n) take place also in case of delays in the coupling between

1 +x%(n) ' the elements of the ensemble. This delay plays an important

role in the analysis of neural interactionsee, e.g.,
y(n+1) = y(n) - 0.01x(n) + 1] (3) [6,12,5(}).3 We illustrate the Kuramoto transition by an ex-

ample, considering coupled Rulkov models
wheren is the discrete time. As follows from Fig. 1 below,

each Rulkov neuron exhibits chaotic bursts.

xi(n+1)= +yi(n) + KX(n),

3
1 +x(n)
B. Synchrony in neural populations
Pathologically large amplitude brain activity appears due yi(n+1) =y;(n) - 0.01x(n) + 1], (4)
to a coordinated firing of a large number of neurons

[4,6,7,35. In particular, it is hypothesized that collective wherei=1,...,N and

synchronous dynamics plays a mayor role in the pathology 1 N
of Parkinson’s disease; this viewpoint is partially supported X(n) == x(n).
by microelectrode studig85-39 as well as by analysis of N7

magnetic brain activitymagnetoencephalogramtoliowed If the couplingK exceeds the critical valué.~ 0.055, then

by current source density reconstructi@,4q. the neurons start to burst coherently, and a macroscopic

Typically, In a neural popu_latlon each unit interacts with mean field appearsee the bold line in Fig. 1 for an example
many other units. The collective dynamics of such a popula-

tion is usually described by the mean-field model WhichCompUted forN=2000 andk =0.08.

assumes that the units are globalfgll-to-all) coupled _ The evolution of the mean field v_vi_tK_ is illustrated _ir_1
[4,6.41,42. As is well known, for sufficiently strong cou- Fig. 2 forN=10*. We see that in the vicinity of the transition

. . the growth of the variance of the mean field ®8ris ap-
pling, such populations undergo the Kuramoto self- - . o
synchronization transitiofil,2,34,43—48 p_rommately I|r_1ear, as expected for a transition tha'F occurs

Consider an ensemble t;fimiis (with N— in the ther- via the Hopf bifurcation. We note that detailed analysis of the
modynamic limi); coupling within each pair of units is transition for very large ensemblés=1f) exhibits that the

quantified by the parametét. Each unit can be regarded as _blfurcatlon is subcritical. However, the jump at the transition

driven by the forceX, whereX:N‘lEi“ilxi is themean field 1S Very small, and therefore it is not seen in the smalier
andx; is an observable of thigh unit. The onset of synchro-

nization in the population with the increase of the coupling *we call this delayinternal to distinguish it from the delag in
parametelK beyond a critical valuél, manifests itself via the control loop, implemented in our technique. Usuatly<T,

the appearance of nonzegmacroscopig oscillations of the  whereT is the period of collective oscillations, whil& can be of
mean field; on the contrary, the variance Xfis small (it order of T or larger. Generally, these two quantities are not related.
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=10% ensemble. Note also that in a finite-size population the gg ' | : : ]
mean field is not zero for the subthreshold coupling, but s s MMWMMMWM a ]
fluctuates with the variance-1/N and the transition is Ee , , ]

smeared51]. 4+5° 2000 4000 6000 8000 1000

05 i
©

IV. SUPPRESSION OF COLLECTIVE SYNCHRONY: ! i i MM . 3
NUMERICAL ILLUSTRATION 50 ‘ 2°°° 4000 8000 8000 1000¢
i 0

= | / N
For the introduction of the delayed feedback control of 2000 0 0 yrn 550 e

T

collective synchrony we consider suppression of the mean ' |
L
88|00 9000

field in an ensemble dfii=10 000 identical Hindmarsh-Rose
FIG. 3. (Color onling (a) Suppression of the mean fieidin the

neurons[Egs. (1)] in the regime of chaotic bursting. The
dynamics of the ensemble is described by the following set
of equations:
X=Yi~ Xi3 + 3Xi2 =2+ 3+KX+ Ki(X(t-7) - X(1)), ensemble of 10 000 Hindmarsh-Rose neurflags. (5)]. The de-
layed feedback is switched on &t5000.(b) The control signat’
y,=1- 5xi2—yi, =g¢(X(t=7)—-X(t)) quickly decays to the noise level and the de-
sired, asynchronous, state of the system is maintained with a mini-
5 — : o mal intervention.(c), (d) Synchronous and asynchronous bursting
%=0.0064(x; +1.56 - 2], ®) of two neurons in the absence and in the presence of the feedback,
whereX=N"2N x; is the mean field, and the terrdX and  respectively.
K¢(X(t=7)-X(t))=C describe the global coupling and the

feedback control, respectively. section, one can use control terms in the formCof X(t

~ The results are presented in Fig. 3 for the strength of the 7). we call these delayed feedback scheuiiésrentialand
internal coupling K=0.08. The feedback control was gjrect control, respectively. In the following we also discuss
switched on at,=5000, i.e.K;=0 for t<t, andK;=0.036  myltiple delaycontrol(see Sec. V R Generally, other forms

for t=1,; the delay time is7=72.5. Here the panel®) and  of control are possible as well, e.g., nonlinear feedback
(b) show the mean field and the control signal, respectivelyschemes, or feedback schemes using the delayed derivative,
It is clearly seen that switching on of the feedback results irhynd so on.

a quick suppression of the mean field in the ensemble, so that goth direct and differential control schemes are param-
only small noiselike fluctuations remaiwe recall that the gtrized by the delay tim& and the feedback coefficieft.
mean field models here the pathological brain actjvityis  poreover, the phase shifé that determines how the signal
important that the control signal decays rapidly and then thgcts on the system is also important. We note thand K
asynchronous state of the ensemble is maintained by feedingin pe adjusted in the experimental implementation, and
back a very weak signal. Another important feature of thetherefore are considered further as free parameters. On the
technique is illustrated in the panels) and (d) where we  contrary, the phase shift depends on the way the irradiated
show the bursting dynamics of two neurons befaeand  control signal influences the individual neurons, and cannot
after (d) the feedback was switched on. One can see that thge easily determined. We illustrate the influence of these pa-
dynamics of individual units barely change; however, theygmeters by the following example.

burst incoherently and therefore produce no macroscopic 0s- \we consider an ensemble of Bonhoeffer—van der Pol os-
cillation. Thus, the feedback control suppresses the collectivgjjiators, coupled via the mean field in thevariable:

synchrony in the ensemble without suppressing the firing of

A. Suppression with minimal intervention

Tr1,T2

T1,T2

time

individual neurons and maintains this state with a weak in- X = X; —xi‘°’/3 =y + |; + KX+ Ki(cosB)X(t - 7),
tervention. Simulations with the Rulkov moddll] demon-
strate that the variance of the field fluctuations in the sup- yi = 0.1(x; + 0.7 = 0.8;) = K¢(sin B)X(t - 7). (6)

pressed state decrease with increasing ensemble size as
1/VN. This means that for very large ensembles the controNote that the delayed feedback here generally affects Yoth

signal tends to zero, and therefore the contraldsinvasive ~ andy variables; the relative strength of these actions is gov-
erned by the phase shit The elements of the ensemble are

not identical: the parametéris takenl;=0.6+o, whereo is
Gaussian distributed with zero mean and 0.1 rms value. We
With the previous example we demonstrated that the dehave performed the simulation of the systé®nfor N=10%,
layed feedback can be exploited to suppress the mean fiefdr several values of the paramejgrand for regularly var-
oscillation. Now we discuss the influence of the parameterged K; and 7. For each set of parameters we compute the
of the control scheme. First of all we emphasize that thevariance of the mean field and tlseppression coefficient S
control can be organized in different ways. In particular, be=[var(X)/var(X;) ]2, whereX andX; are the mean fields in
sides the control tern@ ~ X(t)-X(t-7), as in the previous the absence and presence of the feedback, respectively. In the

B. Domains of control
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1 ' 7 ' ' ' ' [2,49)) for the dynamics of the complex mean figdd

or A=(—e.+iw)A+(e+ie ) A+ (E+IENLAR), Alt-T))
e ——— ~LIAPA. @)

5 Here the term(—e.+iw’)A describes the decay of the mean-
o or field oscillation without the global coupling and delayed
Ll . . . | feedback, due to the tendency of the ensemble to desynchro-
— : : nize because of a distribution of frequencies and/or noise/
chaos in individual elements. The terfm+ic’)A describes
the effect of the global coupling; in general the factor
‘ - +ie’ is complex. A similar term{E+i&") L(A(Y), A(t—7)) de-
02 04 06 08 1 12 scribes the effect of the delayed feedback of the mean field;
T/T here the operatof has a different form for different feed-
l 210 410 610m back schemes to be considered below. Finally, the last non-
linear term describes the saturation of the mean-field oscilla-

FIG. 4. (Color online Domains of suppression for the tion forlargeA.
Bonhoeffer—van der Pol enseml®). Three panels show the sup- Before proceeding with the analysis of £@) we discuss
pression factoS in a gray(color) scale coding. The phase shit the treatment of the delayed term. If the goal of the analysis
that determines how the control signal acts on the elements of this the determination of the frequency of a periodic solution,
ensemble changes from top to bottogr0, —7/10, —«/5. The  then the delay can be substituted by an equivalent phase
delay is normalized by the average peribaf the mean-field os-  shift. However, for the analysis of stability this can be done
cillation without control. only if the delay is small compared to the oscillation period
and no additional instability appears. The delay in the exter-
simulation we used=10" elements. In Fig. 4 we show the Nnal feedback loop is not small, and its replacement by the
dependence of the suppression coeffic®win 7, K. phase shift drastically .changes the stabiliity properties.
From Fig. 4 we conclude that suppression is observed fofiénce, one should consider a delayed equation which is the
relatively large parameter domains, which we call domaindnfinite-dimensional systeniThe same consideration is valid
of control. The position of these domains along thexis  for internal delays, not considered here. _
depends on the phase shit in this example the domains Itis convenient to r_educe the number of parameters in Eq.
are found around const/2, wheren is an integer. One (7). normalizing the time by the frequency of oscillation in
can also see that the maximal value of the suppression factéte absence of delayed feedback, i.e.,dyw’+e’. Then
depends onB as well. In the next section we develop a Ed.(7) takes the form
theory that describes the domains of control.

A= (E+DA+ e L(A®M), Att- 7)) - JAPA.  (8)

V. SUPPRESSION OF SYNCHRONY IN A GLOBALLY Here the derivative is taken over the dimensionless time
COUPLED ENSEMBLE: THEORY =wt (below we use the old notation for timand the nor-

Qualitatively, the effect of suppression can be explained11 allze_(il_t|me d_e lay k_)ecomes=wT. The param_etegz(s
as follows (for definiteness, we consider now direct feed-_sc)‘” is the dimensionless growth rate of oscillations, and

— 1ol Wi i i ilati
back: as the mean fielX is (approximately T periodic, then ¢={"w™". With these 'un|ts the period of osqllatlons of the
the feedback with=nT/2 n=1. 2. . either reduces or in- Uncontrolled system i§=2z. Next, we have introduced the
’ ! T i i i —la—

creases, depending on the signf the driving to each dl'm:ans_li)nless feedback factor according tge™*=(&
element of the ensemble. Respectively, this results in a supti€’)@ - Note that the phase shiét is determined by the
pression or an enhancement of collective synchrony, quantRrganization of the global coupling in the ensemble and by
fied by the variance of the mean field. the properties of individual units. It is important to mention

For the theoretical analysis of the control domains wethat even if the internal coupling and the delayed feedback
make use of the fact that the synchronization transition in £nter the equations in a similar way, as in sys@nwith
globally coupled ensemble can be regarded as a Hopf biful$=0, the shifta in the corresponding amplitude equation is
cation for the mean field. We note, however, that the transigenerally nonzero. o o
tion can be more complefsee[52-56). It is also known In the following we assume that the coupling is supercriti-
that both sub- and supercritical Hopf bifurcations are pos€al: €~-&:=6>0, i.e., a macroscopic mean field exists. In

sible. In the following we consider the most frequent case ofrder to describe the suppression of this field, we should
the supercriticalsoft) bifurcation. determine which values of the feedback parametgysr,

and « ensure the stability of the asynchronous stated in
the controlled syster(). Reduction of the description of the
ensemble dynamics to the amplitude equat®nmakes the
In order to describe the effect of the time delay on thisproblem similar to the analysis of the dynamics of a limit
bifurcation, we first write the model amplitude equati@f cycle oscillator with a delayed feedbafk7]. However, the

A. The amplitude equation

041904-5
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possibility of such reduction and the ability of the considered 02
delayed feedback to control mean-field oscillations without 0.1} ‘ 5 G a=0
affecting oscillations of individual units are highly nontrivial. ot ]
Next, the stability analysis of Eq.7) remains to be done o1 (
separately for different(A(t), A(t—7)). Below we consider e
and compare several types of delayed feedback control =32 '
[’(A(t)a A(t_T)) o1t &a:ﬂ'/tl
B. Direct control &> of -
We start with the control term of the formi(A(t), A(t —0.1\ < ) :; .
—-7))=A(t—7); such a control can be called “direct.” In this 02 . .
case the linearized Eq8) at the asynchronous stafe=0 02 ' ' '
reads 0.1 é a=m/2
. . ok
— H —ia _
A= (E+i)A+ g€ At - 7). (9) oul ( 7 @
In order to analyze the stability of this state we substitute in 02 - - .
Eq. (9) A=A, and obtain the characteristic equatiaf. 04 08 T 12 16 2

[57])
L i\t FIG. 5. Domains of control for the direct control scheme, for
M=E+i+ e e (10) different phase shifte and constant normalized incremef#0.02.
The solution of Eq(10) can be expressed via the Lambert T is the period of mean-field oscillation in the absence of the
function W:C— C, which is defined as the solution of the feedback.

equationW(z)eV? =z [58]. Indeed, rewriting Eq(10) as o
trolled system, namely, th@ormalized incrementé. It de-

A= &-1) = rese %N, (11 scribes how far the ensemble is from the transition point. As
expected, the more unstable is the system, the fewer domains
of suppression exist and the smaller they@ee Fig. 6. The
possible number of domains is estimated in the Appendix.
AT For the (semjquantitative comparison of the theoretical

' description within the framework of the model equati@j
Comparing with the definition of the Lambert function we with the numerics we consider the Rulkov mo¢#lwith the
obtain W(ree™'*e &7 = rge71@e™7, which together with  control termK;X(n-7) added to the right-hand side of the
Eq. (11) gives first equation. We compute the variance of the mean field for
three values of the internal coupling,=0.056,K=0.06,K

taking the exponents of both sides, and multiplying by
Tes€'*, we obtain

i _ . i _ _I —
TE(E iag (&+) 7 — T8¢ iag )\TeTSfe e

N=E+i+ 7 W(ree e ET) (12
The condition R&\) <0 determines the domains of stability 02 ' ' '«5— 0.02
on the parameter planer, g;. (Note that lim o\ 0.1r ( ) Q T
=E+itee) of :
We illustrate the theoretical results in Figs. 5 and 6. First 01 j ( 7 <
we analyze the dependence of the control domains on the o2 ) ) ) )
third parameter of the control, namely on the phase aagle 02 .
One can see that with increase @fthe domains of control o1t U 0 & =10.05 |
are shifted along ther-axis. The domains are positioned -
around r=const+n/2T, where the constant ia-dependent o o (
and vanishes fov=0. Note that fora=7/2 there exists no -0.1 \ Q I
domain atr=0, so that the “trivial” feedback without delay -02 . .
does not sufficé.Negative values ofr result in the shift of 0.2 U '
the control domains to larger delays, in accordance with the 0.1} §=01J
numerical results shown in Fig. Ale recall that if the phase of
shift 8 in Egs.(6) is zero, the effective phase shift is gener- o1
ally nonzero. This explains why the control domain in the ' Q
upper panel of Fig. 4 is shifted with respect4eT/2.] -02 04 08 12 16 )
Next, we analyze the impact of the only parameter of the /T

(normalized model equation that characterizes the con- ) ) )
FIG. 6. Domains of control for the direct control scheme in

- dependence on the stability of the system for constant phase shift
“Indeed, with the no-delay feedback the critical value s3f ~ «=0. The larger is the instability of the system, the smaller are the
providing suppression is given by;=—¢/cosa, i.e., gf— £x domains of control and the stronger feedback is required: suppres-

with a— /2. sion of synchrony is possible fds;| = ¢.
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FIG. 7. (Color onling Comparison of the numerical analysis of -0.1} £=01
the stability domains of the feedback controlled Rulkov ma@gl 02 . . . .
(filled regiong with the stability domains for the equivalent model 0.4 0.8 12 16 2

equation(8) [bold (red) lines] for three different values of the in- /T

ternal couplingK (see text FIG. 8. Domains of control for the differential control scheme,

for different ¢; «=0.
=0.064, and for a range of feedback paramefEis;. The
size of the ensemble =10 Next, from Fig. 2 we estimate C. Differential control
the level of noise in the system, i.e., the variance of the mean . , . . . .
field for subcritical coupling, to be 0.003. We use this value !N this section we consider E@8) with the differential
as a cutoff level: if the variance of the mean field is largercONtrol termL(A(t), A(t—7))=A(t-7)-A(t) resulting in the
than this value, the system is considered to be unstable. TH&€arized equation
obtained stability domains are shown as filled regions in Fig. - , ia
7. Next we have to estimate the parameters of the equivalent A=(E+DA+e [Alt-7) -AD]. (14)

model equation for the Rulkov mod8). From the bifurca-  Note that such a control is used in the Pyragas method of
tion curve (Fig. 2) we estimate the critical coupling a&  chaos suppression; there it is important thaequals the
=0.055. The frequency of the mean field can be easily estineriod of an unstable periodic orbit of the chaotic attractor,

mated aso=27/60. Taking the increment in the model equa- while in our caser is a free parameter. The normalized char-
tion proportional to subcriticality in the full model, i.ec{  acteristic equation reads

=K-K,, we finish with two unknown parameters of the _
model equation that should be determined by a fit. These N=é+itee(eNM-1), (15
parameters are and the equivalent phase shift This can

be easily done, because these parameters determine the [%'—d its solution is expressed via the Lambert function as

sitions of the stability_domains along the vertical and hori- A= ¢-ecosa+i(1+esina)
zontal axes, respectively. The results for1.8 and « —1 i [£-srcoS aH(Ltssin @]
=7/18 shown in Fig. 7 by boldred) lines demonstrate a + 7 W(rege dg e oreos ATt ain) (16)

good correspondence of the theory and numerics. The domains of control are shown in Figs. 8 and 9. Compar-

scheom(e:or\;\?elugiescthes v?/ﬁgfrlw%err?r:fr::ogzr()tlrlls d g'rggmcgggoelirlg the results for direct and differential control schemes, we
' Y fhention (i) for small « the differential control provides

hibit bistability. Indeed, generally speaking, for some Ioaram'Iarger domains of control; however, the number of domains
eter values the stable asynchronous and synchronous sol ' '

tions can coexistsee[11]). To analyze this, we look for the id"smaller as the control can be performed for positive feed-

domain of existence of the periodic solution'®e Substi- back only; (ii) for « close tom/2 both the direct and the
tuting this expression into Eq8) with the control term as in differential schemes are approximately equally effective with

; regard to the parameter range where control is pos4iiilg;
Eq. (9), we obtain similarly to the direct control, the differential scheme pro-
(RP= &+ g,c0dwyT+ a), vides no bistability.

In order to conclude the comparison of the two schemes,
we shall determine the degree of stability within the domains
of control; the latter is quantified by the absolute value of
The periodic solution exists iR>=0, which leads to the Indeed, in the presence of noise the “depth” of the stability
equations for the border of the domdif. Eqs.(A2)]. Thus  domain determines the variance of the fluctuations in the
we can conclude that there is no bistability in the system, anduppressed state. This comparison is shown in Fig. 10. We
within the domains of control the mean-field oscillations cansee that for smalk the differential control provides stronger
always be suppressed. stability.

1=wg+&Sin(wpr+ a). (13
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The control schemgl?) is equivalent to a control with
FIG. 9. Domains of control for the differential control scheme, infinitely many delay lines. Indeed, substitutilgt—7.,) in
for different a; §=0.02. the expressior{1l7) and iterating such substitutions, we ob-

tain

B(t—7=(1-wl[Alt-7+upAlt-1y-17
In this section we explore whether we can improve sup- ) 3
pression of collective synchrony by exploiting multiple- + WAt = 27 = 1) + WA= BT =)+ .
delay control. For this purpose we modify the multiple-delayThe characteristic equation of the linearized By.takes the
version of the Pyragas control suggested by Socetaal.  form
[59]. We write the control term ag=B(t—7), where the _
auxiliary signalB(t) obeys N=E+i+eee™N(1 - p)(1+pue N m+ 2N my -t

B(D) = (1 - w)A() + uB(t = 7), D _gris % (18)

D. Multiple-delay control

here the delayr,, and coefficient 8&<u<1 are free param-
eters. Implementation of such a control requires two delayrhe solution of this equation cannot be expressed in terms of
lines: the mean field\ should be stored on the interviad 7,  the Lambert function. Introducing the notatiarF y+i¢ and

and the auxiliary signaB(t) should be stored on the interval separating real and imaginary parts we find the solution of
t—7— T Eq. (18) in a parametric form:

_ o (<p—1>[Me-Wmcos<wm)—1]—<y—§me-vfmsin<wm>> B ]
Y [arCta’<(y—g)[l—ue-yfmcos(wm—(so—1>ue'yfmsin<wm> el

(y=&[1 - ue " mcog p7y)] — (¢ — Hue Y msin(p7y,)
(1-wcode7+ ) '

&= e’ (19)

Setting y=0 we obtain the borders of control domains. Theindeed enhanced by using multiple delays, although the im-
results are shown in Fig. 11. For better comparison, in therovement is not drastic.

upper panel we show the domains fox0, i.e., for the one-

delay direct control scheme. The baled), solid (blue), and

dashed(black) contour lines correspond to Re=0,-0.1, VI- DISCUSSION AND OUTLOOK

and —0.2, respectively. In the lower panel we show the simi- In this paper we considered in detail the suppression of
lar contour lines foru=0.3; other parameters are the samethe mean field in an ensemble of oscillators from the view-
for the two casesé=0.1,«=0. We see that control can be point of a possible application in neuroscience. Particularly,
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1.0 — Re(M =0 possibility to implement the noninvasive control is very im-
—_— Reg)\i =-0.1 portant from the viewpoint of practical implementation of
05 FE ----Re(A) = -02 7 this approach. Indeed, for noninvasive control the signal that
“ o0 L | is fed into the system is large only for a rather short tijcie
v = Fig. 3), before the mean-field oscillation is suppressed. After
05 | | this, the signal that is required to maintain the normal state of
the neuronal network has the level of noisy fluctuations in
1.0 the system. Hence, the feedback control can be exploited for
1.0 i ' T long periods of time, because both the intervention into the
_ Eggﬁi - (10’1 tissue and energy consumption from the device battery are
el @ -==-Re(A\) = -02 ] minimized. Next, we have shown that using two delay lines
- | one can improve the efficiency of the control, by enlarging
&0 L 9
the control domains in the parameter plane and by achieving
_05 | <] stronger stability of the desynchronized state within these
domains.
1.0 . : : Another advantage of the delayed-feedback suppression is
03 0.5 0.7 0.9 1.1 that this scheme allows one to easily overcome the effect

/T known in engineering as latency. Indeed, in a practical appli-

cation it can happen that the mean field is registered with

FIG. 11. Efficiency of the multiple-delay control scheme. Upper ) . ;
y P Y PP yome retardation time,,. For example, the collective rhythm

panel shows the borders of two control domains for the one-dela " .
direct control schemgbold (red) lines]. Lower panel shows these ©f & neéuronal population could be more conveniently mea-
borders for the multiple-delay control. Solidblue) and dashed Sured by surface electrodes. In this case the measured signal

(black) contour lines correspond to Re=-0.1 and -0.2. Note that Can be a delayed version of the local electric field due to
the second delay makes the control domains larger and morBhite conduction velocity along the neural pathways. Clearly,
“deep.” the suppression will work in this case as well; the delay time
in the external feedback loop should be chosen in such a way
we suggest that time-delayed feedback can be used for thbat the resulting delay+ 7, lies within a domain of sup-
purposes of deep brain stimulation, namely, for suppressiopression. There is another issue of practical importance: usu-
of pathological brain rhythms. The final goal is the develop-ally the observed mean fieldocal field potential as it is
ment of a device that will implement such a control via mi- called in neurodynamigsas to be filtered before being used
croelectrodes implanted into the brain. More realistically, wefor feedback control. We expect that such a filtering does not
hope that the technique will be of interest to neuroscientistsignificantly reduce the feasibility of the control; however,
working on neural oscillations in brain slices. We support ourthis aspect needs special consideration, to be reported else-
idea by numerical simulation of the ensemble dynamics uswhere.
ing mathematical neuronal models of different complexity, as In our discussion of the pathological synchrony in a sub-
well as by a theoretical treatment. In our consideration wesystem of the brain we followed the commonly accepted
exploited the idealized model of globally coupled neurons;approach that this synchrorgnd, hence, pathological activ-
however, numerical analysis of randomly coupled networksty) develops due to an increase of the interneuron coupling
indicates that our approach works in this case as (it  (parameteK in our model$. We recall now that for certain
study will be reported elsewhereAlso, the method works parameters the delayed feedback can cause a reverse effect
even when the interaction between units involves some reand bring instability into a stable ensemble, thus enhancing
tardation due to the finite velocity of the signal transmissionthe mean-field oscillatiorisee[11]). We speculate that this
between neurongs,12,13. We note that we did not analyze effect might be a cause of a pathological brain activity: the
in detail the influence of the different types of interaction neural network where this activity is generated cannot be
between individual units of the network, which may be of considered as isolated from other regions of the brain. In-
chemical or electrical origin, and may occur via the gap junc-deed, this network receives the signals from other functional
tions or via synapses. Properties of the coupling are certainlgubsystems of the central and peripheral neural systems. In
important for a quantitative description of the synchroniza-particular, there are some natural, internal feedback loops
tion transition in a network; however, this transition gener-characterized by their own amplifications and delays. We can
ally occurs via the Hopf bifurcation and therefore we believeassume that som@athological change of the parameters of
that our technique is applicable for different types of neu-these loops can result in excitation of mean-field oscillation.
ronal interaction. This would mean that suppression of pathological rhythms
We have performed a comparative analysis of two controtan be achieved by affecting.g., by a medicationthese
schemes that we call direct and differential control. The im-internal loops.
portant difference between these two techniques is that the To conclude, we mention some directions of ongoing re-
first one is generally invasive, in the sense that the contratearch. A practical method for determination of the appropri-
signal in the suppressed state tends to a constant, whereas dte parameters of the feedback contfobnd K in a real
latter technique is noninvasive, i.e., the control tends to zeraexperiment is still lacking. A possible solution here might be
(In a noisy ensemble of finite size this means that the contramplementation of a nonlinear optimization scheme. Next, an
signals fluctuate around a constant or zero, respecfjVeig  important extension of the presented technique would be
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consideration of the spatial effects that are neglected in thering separately the cases¥ and 1<v, we end with the
model of global coupling. For practical implementation it is expression for two border lingghey describe two modes of
also necessary to analyze in detail the suppression of multinstability)

mode instabilities. Indeed, generally, an ensemble of globally —[2_z
coupled elements can have many modes of instaljiély 7= arctart+ \syf ~ €18 + mT_
moreover, the delayed feedback may bring new instability. 1-Vef-¢€

Preliminary analysis of the delayed-feedback control in an
ensemble of noisy phase oscillatgfs] shows that the sta-
bility of different modes can be treated separately, and the g [which can be described by some functiamsf, ,(z()]
domains of overall stability can be obtained as the intersecq,, o at the tip of the region, i.e., in the poim5:|é| the
tions of the stability domains for all modes. A very important yejyativedr/de;= 0. The following relations are satisfied at
topic of future study is a comparison and possibly a combiyhe tip: =1, 7/T=n/2, wheren=0, 1, ..., or 7w=nm. To
nation of this approach with the phase resetting techniquegng the derivative, let us derive Eq#2) with respect tee;.

Let us now find the maximal number of suppression re-
ions. To do this, note that a region disappears if both border

developed by Taspt,27-32. We get
. dv dr) _
ACKNOWLEDGMENTS CosSyT—&SIinvr d_sfﬁ Vde;) ~ 0,
The work has been supported by DF&FB 555 “Com-
plex nonlinear processes'The authors gratefully acknowl- sinvr+ ef003v7-<27-+ Vﬂ) - ﬂ (A3)
edge discussions with O. Popovych and P. A. Tass. e dey dey
Multiplication of the first equation by cosine and the second
APPENDIX: ESTIMATION OF THE NUMBER by sine and summation yields
OF CONTROL DOMAINS dv
l=-——-sinvr.
In order to estimate the number of domains for the dey
given parameters of the characteristic equatibere we  Then from the first equation we get
take a=0)
. dr
N=E+i+gEe™, (A1) COSVTJfoT‘8fS|n(V7')Vd—éBf =0.
we write A =iv and obtain two real equations for the borders Finally, we obtain
of the stability domaingsee[57)): '
dr _cosvr+er
£iCOSYT=—¢, deg - evSinvT '
esinvr=1-u. (A2) The required condition is then ces+e;7=0, or, if we take

into account the values at the tipé=mné=1. Hence, sup-
Squaring and summing these equations gi¥és¢?+(1  pression is possible for the number of regids[(mwé)™],
—v)2. Dividing the equations gives tam=(v—1)/& Consid-  where[ ] denotes the integer part.

[1] A. T. Winfree, The Geometry of Biological TiméSpringer, Jung(Springer, Berlin, 2008
Berlin, 1980. [8] S. A. Chkhenkeli, Bull. Georgian Acad. Sc0, 406 (1978.

[2] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence [9] S. A. Chkhenkeli, irEpilepsy as a Dynamic DiseagRef.[7]),
(Springer, Berlin, 1984 pp. 249-261.

[3] H. Haken, Advanced Synergetics: Instability Hierarchies of [10] A. Behabidet al, Lancet 337, 403 (1991.
Self-Organizing SystengSpringer, Berlin, 1998 [11] M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. L&,

[4] P. A. TassPhase Resetting in Medicine and Biology: Stochas- 114102(2004).
tic Modelling and Data AnalysigSpringer, Berlin, 1999 [12] M. K. S. Yeung and S. H. Strogatz, Phys. Rev. L&P, 648

[5] A. Pikovsky, M. Rosenblum, and J. KurtH8ynchronization: A (1999.
Universal Concept in Nonlinear Sciencgambridge Univer-  [13] E. Niebur, H. G. Schuster, and D. M. Kammen, Phys. Rev.
sity Press, Cambridge, England, 2001 Lett. 67, 2753(1991).

[6] D. Golomb, D. Hansel, and G. Mato, Meuro-informatics and  [14] M. Dhamala, V. K. Jirsa, and M. Ding, Phys. Rev. Le®2,
Neural Modeling Handbook of Biological Physics Vol. 4, ed- 074104(2004.
ited by F. Moss and S. GielefElsevier, Amsterdam, 2001 [15] D. V. Ramana Reddy, A. Sen, and G. L. Johnston, Phys. Rev.
pp. 887-968. Lett. 80, 5109(1998.

[7] Epilepsy as a Dynamic Disegsedited by J. Milton and P. [16] D. V. Ramana Reddy, A. Sen, and G. L. Johnston, Phys. Rev.

041904-10



DELAYED FEEDBACK CONTROL OF COLLECTIVE.. PHYSICAL REVIEW E 70, 041904(2004

Lett. 85, 3381(2000. [39] P. Tasset al, Phys. Rev. Lett81, 3291(1998.

[17] K. Pyragas, Phys. Lett. A70, 421(1992. [40] P. A. Tasset al,, Phys. Rev. Lett.90, 088101(2003.

[18] K. Pyragas, Phys. Lett. 206, 323(1995. [41] D. Hansel and H. Sompolinsky, Phys. Rev. Le@8, 718

[19] G. Franceschini, S. Bose, and E. Schdll, Phys. Re§0E5426 (1992.
(1999. [42] P. C. Bressloff, Phys. Rev. B0, 2160(1999.

[20] M. Bertram and A. S. Mikhailov, Phys. Rev. B3, 066102 [43] Y. Kuramoto, in International Symposium on Mathematical
(200D. Problems in Theoretical Physicedited by H. Araki, Springer

[21] P. Parmananda, Phys. Rev.&, 045202R) (2003. Lecture Notes Phys., Vol. 39Springer, New York, 1976

[22] W. Justet al, Phys. Rev. E67, 026222(2003. p. 420.

[23] D. Goldobin, M. Rosenblum, and A. Pikovsky, Phys. Rev. E [44] R. Mirollo and S. Strogatz, SIAMSoc. Ind. Appl. Math). J.
67, 061119(2003. Appl. Math. 50, 1645(1990.

[24] M. S. Titcombe, L. Glass, D. Guehl, and A. Beuter, Chdds [45] A. Pikovsky, M. Rosenblum, and J. Kurths, Europhys. Lett.
766 (2001). 34, 165(1996.

[25] B. J. Gluckmaret al, J. Neurophysiol.76, 4202(1996. [46] S. H. Strogatz, Physica 043 1 (2000.

[26] B. J. Gluckman, H. Nguyen, S. L. Weinstein, and S. J. Schiff,[47] D. Topaj, W.-H. Kye, and A. Pikovsky, Phys. Rev. Le87,
J. Neurosci.21, 590 (2001). 074101(2001).

[27] P. A. Tass, Europhys. Let63, 15 (200J). [48] E. Ott, P. So, E. Barreto, and T. Antonsen, Physicd T3, 29

[28] P. A. Tass, Europhys. Let65, 171(2002. (2002.

[29] P. A. Tass, Phys. Rev. B6, 036226(2002). [49] J. D. Crawford, J. Stat. Phyg4, 1047 (1994).

[30] P. A. Tass, Europhys. Let67, 164 (2002. [50] N. Brunel and V. Hakim, Neural Computfll, 1621(1999.

[31] P. A. Tass, Biol. Cybern87, 102 (2002. [51] A. Pikovsky and S. Ruffo, Phys. Rev. &9, 1633(1999.

[32] P. A. Tass, Biol. Cybern89, 81 (2003. [52] H. Daido, Prog. Theor. Phys88, 1213(1992.

[33] J. L. Hindmarsh and R. M. Rose, Proc. R. Soc. London, Ser. 53] H. Daido, Prog. Theor. Phys39, 929 (1993.
221, 87 (1984). [54] H. Daido, J. Phys. A28, L151 (1995.

[34] N. F. Rulkov, Phys. Rev. Lett86, 183(2001J). [55] H. Daido, Physica D91, 24 (1996.

[35] H. Bergmanet al, Trends Neurosci21, 32(1998. [56] J. D. Crawford, Phys. Rev. Let74, 4341(1995.

[36] M. Magnin, A. Morel, and D. Jeanmonod, Neuroscier2® [57] D. V. Ramana Reddy, A. Sen, and G. L. Johnston, Physica D
549 (2000. 144, 335(2000.

[37] J. Sarnthein, A. Morel, A. von Stein, and D. Jeanmonod,[58] R. M. Corlesset al, Adv. Comput. Math.5, 329(1996.
Thalamus Relat. Sys®2, 321(2003. [59] J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier, Phys. Rev.

[38] J. A. Goldberget al,, J. Neurosci.24, 6003(2004). E 50, 3245(1994).

041904-11



