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Controlling Synchronization in an Ensemble of Globally Coupled Oscillators
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We propose a technique to control coherent collective oscillations in ensembles of globally coupled
units (self-sustained oscillators or maps). We demonstrate numerically and theoretically that a time
delayed feedback in the mean field can, depending on the parameters, enhance or suppress the self-
synchronization in the population. We discuss possible applications of the technique.
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FIG. 1. (a) Suppression of synchrony in the population of
Hindmarsh-Rose neurons (1) for " � "f � 0:08, � � 147 �
T=2. The arrow indicates when the control is switched on.
(b),(c) Bursting of an individual neuron (dotted lines) and the
mean field (solid lines) without and with delayed feedback,
respectively. Note that only the collective dynamics is influ-
control see [14].
enced by the feedback; dynamics of individual units is practi-
cally unchanged.
Populations of a large number of coupled oscillators are
abundant in physics, chemistry, and biology. The ex-
amples of nontrivial collective dynamics in such ensem-
bles include synchronous regimes in arrays of Josephson
junctions [1] and lasers [2], coordinated firing of cardiac
pacemaker cells [3], synchronous emission of light pulses
by a population of fireflies [4] and emission of chirps by a
population of crickets [5], synchronization in ensembles
of electrochemical oscillators [6] and in neuronal popu-
lations [7,8]. A general phenomenon in such populations
of periodic, noisy, and chaotic oscillators and maps is the
appearance of the collective synchrony, studied theoreti-
cally [9–11], as well as experimentally [6,12]. A proper
model for many of these systems is that of global (each-
to-each) coupling between the elements. Consider an
ensemble of N units (with N ! 1 in the thermodynamic
limit); coupling within each pair of units is quantified by
the parameter ". Each unit can be regarded as driven by
the force "X, where X � N�1

PN
i�1 xi is the mean field and

xi is an observable of the ith unit. Onset of synchroniza-
tion in the population with the increase of the coupling
parameter " beyond a critical value "cr manifests itself
via the appearance of nonzero (macroscopic) oscillations
of the mean field; on the contrary, the variance of X is
small (it vanishes in the thermodynamic limit) if the
coupling strength is below the critical value, " < "cr.
The synchronization transition is often considered in
analogy to phase transitions, with the variance of X play-
ing the role of the order parameter [13].

In this Letter we suggest a technique for controlling the
synchronous collective dynamics in an ensemble of glob-
ally coupled systems. For this purpose the time delayed
mean field is fed back into the ensemble. By choosing the
amplification "f and the delay � in the feedback loop we
can both enhance and suppress collective oscillations. For
accomplishing this neither information on the details of
the individual oscillators and their interactions nor the
access to their parameters is needed. Only the macro-
scopic properties of the collective dynamics determine
the feasibility of the control. Below we demonstrate
the technique on several representative examples and
develop a theory. For other applications of a time-delay
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To introduce the method and to illustrate its possible
application in neuroscience, we first consider a realistic
model of collective rhythmical activity in a population of
neurons, where individual neurons are described by the
Hindmarsh-Rose equations [15]:

_xxi � yi � x3i � 3x2i � zi � 3� "X� "fX�t� ��;

_yyi � 1� 5x2i � yi; _zzi � 0:006 � 	4�xi � 1:56� � zi
:

(1)

We have simulated the dynamics of the ensemble of 2000
identical neurons in the regime of chaotic bursting (Fig. 1).
The global coupling ( � ") leads to a rather irregular
mean field, though it has a strong T-periodic component.
In spite of the irregularity, the mean field is suppressed
when the control ( � "f) is imposed. We emphasize that
the feedback control does not affect oscillations in indi-
vidual neurons [compare the dotted lines in panels (b)
and (c) of Fig. 1], but destroys the synchrony between the
2004 The American Physical Society 114102-1



P H Y S I C A L R E V I E W L E T T E R S week ending
19 MARCH 2004VOLUME 92, NUMBER 11
neurons, so that their spikes do not sum up coherently to a
macroscopic mean field.

Next, we consider an ensemble of N � 2000 nonident-
ical chaotic Rössler oscillators coupled via the mean field:

_xxi � �!iyi � zi � "X;

_yyi � !ixi � ayi � "fX�t� ��;

_zzi � 0:4� zi�xi � 8:5�; (2)

where a � 0:15 and the distribution of !i is Gaussian
with the mean !0 � 1 and the standard deviation ! �
0:02. Without feedback ("f � 0) the system undergoes
the Kuramoto synchronization transition at "cr � 0:05
[10]. Above the transition threshold X is approximately
periodic with the period T � 6; below the threshold one
observes small irregular fluctuations of X that are due to
the finite size of the ensemble. To model a realistic situ-
ation, where the additional feedback field may affect the
oscillators in another way than the internal coupling, we
include the control term in the second equation of (2). To
characterize the efficiency of the control, we present in
Fig. 2 the dependencies of the enhancement factor E �
�Var�Xf�=Var�X��1=2 and the suppression factor S �
�Var�X�=Var�Xf��

1=2 on �, "f; X and Xf are the mean
fields in the absence and presence of the feedback.

The efficiency of control depends on the regularity of
the mean field determined by the regularity of individual
elements and by the population size N. So, the suppres-
sion in a population of coherent Rössler systems (2) is less
effective than in a population of limit cycle oscillators (in
our simulation we used the FitzHugh–Nagumo systems),
but more effective than in a population of funnel Rössler
systems [parameters a � 0:25, !0 � 0:97 in (2)], which
can be considered as ‘‘very noisy’’ oscillators.
FIG. 2. Enhancement factor E (top panel, " � 0:03) and
suppression factor S (bottom panel, " � 0:1) of the mean
field oscillations in system (2) in a gray scale coding. Control
is achieved within the ‘‘tongues’’ located around � � const�
nT=2. For the given control scheme, no tongue exists at � � 0,
so that the ‘‘trivial’’ feedback without delay does not suffice.
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Considering the effect of the population size N, we
have observed that in system (2) with N � 2000 the
suppression factor S is � 2 times higher than for the
case N � 500. Indeed, in the finite-size population
the mean field below the synchronization threshold can
be treated as a noise with the variance �N�1 [16]. On the
other hand, for " > "cr, Var�X� does not practically de-
pend on N, so the maximal possible suppression S�

����
N

p
.

Discussing the amount of intervention into the system, we
note that although Var�X� is small when the synchrony is
suppressed, hXi does not necessarily vanish. In order to
have a noninvasive control, i.e., a completely vanishing
control term in the asynchronous state, one can use a
differential feedback in the spirit of [14]. We demonstrate
this by considering the feedback control of an ensemble of
globally coupled maps modeling the chaotic bursting of
neurons [11]:

xi�t� 1� � 4:3	1� x2i �t�

�1 � yi�t� � "X

� "fX�t� �� � "0fX�t�;

yi�t� 1� � yi�t� � 0:01	xi�t� � 1
: (3)

Here t is the discrete time; the mean field X is defined as
above. Each neuron exhibits irregular bursts, whereas
the collective oscillation is highly regular. The delayed
feedback with "0f � 0, as in (1) and (2), we call direct,
whereas the feedback with "0f � "f we call differential.
Both control schemes efficiently control the synchroniza-
tion transition in this system. In Fig. 3(a) we show the
results for the differential feedback: by an appropriate
choice of � and "f one shifts the curves, altering
the synchronization threshold "cr. Suppression can be
achieved for � � T=2 and � � T; the suppression regions
have the form of closed islands (cf. Fig. 2 and the theo-
retical consideration below).With the discrete-time model
(3) we can study very large ensembles; the obtained
dependence of the suppression factor on the population
size [Fig. 3(b)] fits well the expected law S�

����
N

p
, both

for the direct feedback scheme and for the differential
one. Hence, as the variance of the control signal scales as
FIG. 3. (a) Variance of the mean field for system (3) in
dependence on the coupling " for different values of the feed-
back parameter "f � "0f (shown at the correspondent curves)
and constant delay � � 30 � T=2. Bold line shows the syn-
chronization transition without feedback. (b) Efficiency of the
control in dependence on the population size N for "0f � 0
(circles) and "0f � "f (boxes).
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N�1, the differential control scheme is noninvasive in the
thermodynamic limit (the direct control is generally in-
vasive as the feedback signal tends to a constant).

Next, we discuss two important points for the practical
implementation of the method. (i) The delay � in the
introduced global feedback is not equivalent to the inter-
nal delays �int, playing an important role in the analysis of
neural interactions (see, e.g., [8,17,18,]). Usually �int � T,
where T is the period of collective oscillations, while �
must be of the order of T. Our technique works in the case
of delayed internal interactions as well; this was checked
in experiments with model (3) with a delay in the internal
coupling between the neurons. The results are very simi-
lar to those presented in Fig. 3. (ii) The method works if
there is a latency in the observation of the mean field. In
this case the delay time � in the direct feedback is simply
a sum of the observational and additional delays.

For a theoretical description of the time delayed feed-
back control we exploit the noisy phase dynamics model
(cf. [8,9,17])

_�� i � !i �
"
N

XN
1

h	�j�t� ��i�t�


�
"f
N

XN
1

f	�j�t� �� ��i�t�
 � �i�t�; (4)

where �i are the phases of units, ��t� is Gaussian
noise with h�i�t��j�t0�i � 2D��t� t0��ij; h and f are
2�-periodic functions describing coupling in the en-
semble and the feedback. Such a model describes weakly
interacting noisy limit cycle oscillators with different
natural frequencies !i, as well as nonidentical chaotic
oscillators of the Rössler type [10]. Considering the limit
N ! 1, we drop the indices and introduce the probability
distributions of the phases ���;!; t� and of the natural
frequencies g�!�, then � obeys the Fokker-Planck equa-
tion �@�=@t� � ��@=@��	�v
 �D�@2�=@�2�, where v is
given by

v �!� "
Z 2�

0
d$

Z 1

�1
g�!�h�$�����$;!; t�d!

� "f
Z 2�

0
d$

Z 1

�1
g�!�f�$�����$;!; t� ��d!;

its stationary solution �0 � 1=2� describes the asynchro-
nous state with vanishing mean field. To analyze the
stability of this solution we substitute � � 1=2��P

k	Ck�!�e(kt�ik� � C�
k�!�e(kt�ik�
. Preserving only lin-

ear in Ck terms we get

Ck�!� � �ik
"H�

k � "fF�
ke

�(k�

(k � k2D� ik�!� "H0 � "fF0�
Bk;

where Hk, Fk are coefficients of the Fourier series
of functions h, f, and Bk �

R
1
�1 g�!�Ck�!�d!.

Substituting Ck in this expression, we obtain
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1 � �
Z 1

�1

ik�"H�
k � "fF�

ke
�(k��g�!�d!

(k � k2D� ik�!� "H0 � "fF0�
:

The problem can be completely solved for the Lorentzian
distribution of the frequencies g�!� � ,=��	,2 � �!�
!0�

2
�. In this case the integral can be calculated
explicitly and we obtain transcendent equations (k �
k2D� ,� ik ~!!� ik�"H�

k � "fF
�
ke

(k�� � 0, where ~!! �
!0 � "H0 � "fF0. Remarkably, the equations for differ-
ent Fourier modes of the distribution density are inde-
pendent, so that the stability analysis can be performed
separately for each of them (cf. [8]). Although the eigen-
values (k cannot be found explicitly, assuming (k �
�i’=� and writing F�

k � ijFkjei.k , one easily finds the
kth stability region on the plane of the feedback parame-
ters ��; "f� in a parametric form:

"f � 	,=k� kD� "Im�Hk�
	jFkj cos�’� .k�

�1;

� � ’k�1	"fjFkj sin�’� .k� � ~!!� "Re�Hk�

�1: (5)

The overall stability of the asynchronous state is deter-
mined by the overlap of these domains for all modes.

Stability analysis of the asynchronous state should be
complemented by the analysis of stability of the synchro-
nous regime. The latter can be accomplished in an in-
structive case of identical oscillators without noise, i.e.,
for g�!� � ��!�!0� and D � 0. The frequency of the
completely synchronous regime with the uniformly grow-
ing phase �i � �t is determined from (4) by

� � !0 � "h�0� � "ff�����: (6)

This regime can lose stability in two ways. (i) All phases
remain equal but the rotation becomes nonuniform in
time; this corresponds to instability to a homogeneous
perturbation �i � �t� ��t�. This perturbation satis-
fies d�=dt� "ff0�����	��t� ���t� ��
 � 0,
leading to the stability criterion �"ff0����� � 1 > 0.
Together with (6) this allows one to represent the border
of the stability domain in a parametric form:

"f � �!!0	’f0�’� � f�’�
�1; � � �	"ff0�’�
�1;

(7)

where �!!0 � !0 � "h�0�. (ii) Another instability mode
corresponds to destruction of synchrony via ‘‘evapora-
tion’’ of individual oscillators from the synchronous clus-
ter. Here we have to consider a perturbation of a single
oscillator, �i � �t��i�t�, which satisfies d�i=dt �
��i	"h

0�0� � "ff
0�����
. Together with (6), the con-

dition "h0�0� � "ff
0����� > 0 gives the stability do-

main

� � 	’f0�’�
	"h0�0�f�’� � �!!0f
0�’�
�1;

"f � �"h0�0�	f0�’�
�1: (8)

Regions of stability of synchronous and asynchronous
regimes are shown in Fig. 4. Let us for definiteness
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FIG. 4. Results of the theoretical analysis of the delayed
feedback control in model (4) with h��� � sin�, f��� �
cos�, !i � !0, and D � 0 for "=!0 � 0:1, cf. Fig. 2. Grey:
regions of stability of the asynchronous state according to (5);
black: regions of evaporation instability of the uniformly
rotating synchronous state according to (8); these are regions
of strong control. The uniformly rotating state is homogene-
ously unstable in regions marked by dashed lines (7).
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discuss the suppression of synchrony. There exists a do-
main of parameters where the synchronous state is stable
towards homogeneous perturbations and is unstable to-
wards evaporation, and the asynchronous state is stable.
This can be called a region of strong control, as here even
initially complete synchrony can be suppressed. In an-
other domain of weak control both the synchronous and
asynchronous states are stable; here the asynchronous
state can be maintained by the feedback control, but the
synchronous state is not destroyed. Finally, there is a
region where the uniformly rotating synchronous state
is unstable towards homogeneous perturbations, and
only complex synchronous states are possible. Stability
of these regimes towards evaporation cannot be analyzed
analytically but requires numerical evaluation of the cor-
responding Lyapunov exponent.

In summary, we have proposed a technique for con-
trolling the synchrony in populations of globally coupled
elements, which enables us to suppress or to enhance it.
Tuning the amplification and the delay of the feedback
loop we can effectively change the critical point "cr of the
synchronization transition in such systems. We expect
possible applications of our technique, e.g., in neuro-
science, where it is often required to suppress a patho-
logical activity of ensembles of neurons [19,20]. For
example, it is widely believed that the onset of a rhyth-
mical brain activity in the cases of the Parkinson’s disease
can be regarded as a synchronization transition in a large
neuronal population; this viewpoint is used in developing
the techniques for suppression of these rhythms by means
of the deep brain stimulation [20]. The feedback control
described in this paper might be more appropriate for this
goal because it reduces the intervention into the system:
the control signal is large only for the rather short tran-
sient time before the mean field oscillations are sup-
114102-4
pressed; afterwards the control signal is of the order of
the background noise. On the other hand, feedback en-
hancement of collective oscillations might be useful in
the cases of failure of cardiac or neural pacemakers.
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[12] Z. Néda et al., Nature (London) 403, 849 (2000).
[13] H. Haken, Advanced Synergetics: Instability Hierarchies

of Self-Organizing Systems (Springer, Berlin, 1993).
[14] K. Pyragas, Phys. Lett. A 170, 421 (1992); 206, 323

(1995); G. Franceschini, S. Bose, and E. Schöll, Phys.
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