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In this article we review the application of the synchronization theory to the analysis of
multivariate biological signals. We address the problem of phase estimation from data
and detection and quantification of weak interaction, as well as quantification of the
direction of coupling. We discuss the potentials as well as limitations and misinterpre-
tations of the approach.
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1. Introduction

Synchronization is a fundamental nonlinear phenomenon, and it plays an important
role in various fields of science and engineering [1–5]. Very often it is found in live
systems, being observed on a level of single cells, physiological subsystems, organ-
isms and even on the level of populations [3, 6, 7]. Sometimes, this phenomenon
is essential for a normal functioning of a system, e.g. for a coordinated motion
of several limbs or for the performance of a pacemaker, where many cells fire syn-
chronously, and in this way produce a macroscopic rhythm that governs respiration,
heart contraction, etc. Sometimes, the onset of synchrony leads to a severe pathol-
ogy, e.g. in case of the Parkinson’s disease, when locking of many neurons results in
the tremor activity. Quite often, the functional role of synchrony is yet unknown,
e.g. in case of cardiorespiratory coordination [8–12] or in case of mutual entrain-
ment of respiration and locomotion; possibly its appearance is just a manifestation
of a general property of self-sustained oscillators — to adjust their rhythms due
to a weak interaction. On the other hand, onset or cessation of synchrony reflects
variation in the state of the complex system, and therefore may provide important
physiological information.

In this paper we review the application of synchronization ideas to analysis
of multivariate data measured from biological systems. We discuss and compare
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traditional and recently introduced techniques aimed to reveal and quantify the
interaction between physiological subsystems from measurements. The main idea
is to consider the inverse problem, i.e. to analyze the observed phase relations in
order to obtain some information on the interaction of the systems generating the
signals. In particular, we are interested in quantification of the strength and of
the interaction and estimation of the directionality of coupling. We pay especial
attention to the discussion of possible pitfalls and limitations of the method.

We note that such well-known effects as classical and stochastic resonance [13,14]
in some respects are close to synchronization and cannot be distinguished from it
within the framework of a passive experiment, i.e. when the system is simply
observed, without any controlled variation of its parameters (for a discussion of
active and passive experiments see [3]). A common feature of these effects is an
appearance of a relation between phases and frequencies of two or many signals,
and therefore the analysis of these relations can be used in case of a resonance as well.
In particular, this approach has been successfully exploited for the investigation of
stochastic systems [5, 15–17].

2. Estimation of Instantaneous Phases

Prior to the analysis of phase relations we have to estimate phases from data. There
exist three main approaches to the problem. One is based on the construction of
the complex analytic signal ζ(t) [18] from a scalar experimental time series s(t) via
the Hilbert transform (HT)

ζ(t) = s(t) + isH(t) = A(t)eiφ(t) , sH(t) = π−1P.V.

∫

∞

−∞

s(τ)

t− τ
dτ , (1)

where sH(t) is HT of s(t). Equation (1) unambiguously provides an instantaneous
phase φ(t) and an amplitude A(t). Note that HT is parameter free. Practical hints
for computation and usage of the HT, as well as further citations can be found
in [3, 19]. Here we briefly mention the crucial points:

• Mathematically, HT is defined for an arbitrary signal. However, φ(t) and A(t)
admit a clear physical interpretation only for narrow band signals. If the signal
has no well-expressed peak in its power spectrum, then the computation of
the phase and application of the synchronization approach is highly doubtful.

• A complex signal that can be considered as a mixture of several narrow band
processes should be first decomposed into oscillatory components that can
be considered as signals with slowly varying amplitude and frequency; as the
next step, the phases of these components can be obtained via HT. (Note that
sometimes it is difficult to decide whether a peak in the spectrum represents
another process or a harmonic.) Decomposition can be done by means of a
band-pass filter or by more sophisticated techniques like independent compo-
nent analysis.

• Determination of φ(t) is very sensitive to low-frequency trends, what makes
the preprocessing of the data a crucial step in the analysis.
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The second approach exploits the wavelet analysis with a complex wavelet func-
tion and provides a phase (and an amplitude) as functions of time for a certain
spectral frequency band [20, 21]:

A(t; f)eıφ(t;f) =

∫

∞

−∞

s(τ)Ψ∗(t, τ ; f)dτ , (2)

where Ψ(t, τ ; f) is the Morlet, or Gabor, wavelet:

Ψ(t, τ ; f) =
√

f exp (ı · 2πf(τ − t)) exp

(

−
(τ − t)2

2σ2

)

.

This procedure is equivalent to a band-pass filtration and subsequent HT of the
signal s(t) [22]. The central frequency of the filter is f , and its width is determined
by the parameter σ.

Third, the phase can be very easily introduced for processes that can be treated
as a series of well-defined events taking place at times tk (point processes). Examples
include signals characterizing heart beat or neuron firing [23]. If the interval between
two events can be considered as a cycle, then it is natural to say that the phase
increment between the events is exactly 2π. Hence, we can assign to the times tk
the values of phase φ(tk) = 2πk, and for arbitrary instant of time tk < t < tk+1

take

φ(t) = 2πk + 2π
t− tk

tk+1 − tk
. (3)

Finally, we mention that definition and practical determination of a phase of
a complex signal in the context of the synchronization analysis remains an open
problem. One approach, called locking-based frequency measurement was suggested
in [24]. The idea of this approach is to use the signal under study to drive a set
of uncoupled limit cycle oscillators with different natural frequencies. A subset
of these probe oscillators can be entrained by the common forcing, and therefore
synchronize in between; the frequency and the phase of these locked oscillators can
be taken as an estimate of the frequency and phase of the original signal.

3. Quantification and Interpretation of Phase Relations

As soon as the phases of two signals are estimated by appropriate methods, the
relations between phases can be quantified. For this purpose we recall that the
interaction of noisy oscillators is reflected in the distribution of the cyclic relative
phase

ψn,m(t) = (nφ1(t) −mφ2(t)) mod 2π ,

where n,m are integers characterizing the order of locking (see, e.g. [3]). For uncou-
pled oscillators the distribution of ψn,m is uniform, whereas the interaction makes
this distribution unimodal. Hence, the strength of interaction between the systems
can be estimated via quantification of the form of the distribution of ψn,m. The cor-
respondent measures are called synchronization indices; usually they are normalized
in such a way that zero index corresponds to complete independence, whereas unit
index corresponds to perfect phase locking. An index can be based on the Shannon
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entropy of the distribution of ψn,m(t) [25]. Alternatively, it can be taken equal to
the intensity of the first Fourier mode of the distribution [19, 20]:

ρ2
n,m = 〈cosψn,m〉2 + 〈sinψn,m〉2 .

The advantage of this measure is the absence of parameters. Note that the integers
n,m can be evaluated from the estimation of the average frequencies of two signals
(e.g. from their power spectra), or found by trial and error by looking for the
maximum of ρn,m.

If one of the signals can be considered as a point (event) process, then the phase
interrelation can be conveniently quantified with the help of the phase stroboscope.
For example, this technique turned out to be useful in the analysis of cardiores-
piratory interaction [3, 10, 19]. Phase stroboscope implies, that the second signal
is observed at the moments when the events in the first signal occur, i.e. when
φ1(t) = 2πn. So, in case of the cardiorespiratory data, the phase of the respira-
tory signal is determined at the instants of the appearance of the R-peak in the
cardiogram. Interaction between the systems can be revealed by means of a graph-
ical tool, called synchrogram, and quantified by means of characterization of the
stroboscopically observed phase [11].

Concerning the interpretation of the phase relations we want to emphasize the
difference between the approach developed in our previous papers (see [19] for a
review) and the approach, suggested in [20,21]. Our approach, based on the theory
of coupled oscillators assumes that there exists a unique phase for each of the
interacting oscillators. Therefore the preprocessing, e.g. by means of a band-pass
filter, is aimed to extraction of a certain signal from its mixture with other signals
and broad band noise. This extracted signal is assumed to be generated by one
of the subsystems under study, and the phase of this subsystem is estimated and
n : m relation between phases is quantified. On the contrary, in the approach
of [20, 21] the phase is computed subsequently for all spectral frequency bands by
means of the continuous variation of the wavelet parameter corresponding to the
central frequency of the band-pass filter. Then, a 1 : 1 phase relation of two signals
is quantified for each frequency band, providing the index ρ1,1 as a function of the
spectral frequency f . ρ1,1(f) can be considered in analogy to the classical tool of the
cross-spectrum analysis, namely to the coherence function γ(f). Similarly to γ(f),
ρ1,1(f) characterizes the interdependence between certain frequency components of
two signals; however, in contrast to γ(f), ρ1,1(f) takes into account only the phase
information. Thus, the technique [20, 21] should be considered as an extension
of the cross-spectrum analysis rather than in the framework of coupled oscillator
approach.

Concluding this section, we comment on the relevance of possible relations be-
tween the amplitudes of the signals. Our approach is motivated by the synchro-
nization phenomenon, where the phase (and frequency) relations are of primary
importance, whereas the amplitudes are generally not much influenced by a weak
interaction, and, e.g. in case of chaotic systems can be weakly correlated. How-
ever, the experimental data do not always comply with this model, and then the
amplitude relations can be also important. An example is given in [26], where in-
terhemispheric synchrony of spontaneous beta oscillations in humans was analyzed.
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It was shown that the phase relations are amplitude-dependent, namely, the syn-
chronization index increases with the amplitude of signals; it was hypothesized that
this is due to the increase of the signal-to-noise ratio. However, a visual inspection
of the signals shows a strong amplitude modulation of signals (that is why these
oscillations are called spontaneous) which is typical for narrow band noise. So, we
may assume that the systems under study cannot be considered as self-sustained
oscillators, and, therefore, the notion of synchronization may not be applicable in
this case. The observed phase relation should be rather interpreted in terms of a
resonance, where the amplitude relations, certainly, are important.

4. Asymmetric Phase Relations

If an interaction between two oscillators is established, the next step in the analysis
can be the quantification of the direction of coupling. This question is nontrivial
because synchronization may be caused either by biderectional or by unidirectional
coupling. We outline here two approaches. One, based on information theory,
quantifies the direction of the information flow [27]; it operates with raw signals.
This approach goes back to the mutual predictability concept of Granger [28] that
we can briefly formulate as follows: if system 2 acts on system 1, then we can better
predict the future of the system 1 if we take into account the information on the
system 2; this can be also formulated in terms of entropy. The other approach [29]
works with the phase data and is based on the coupled oscillator theory.

The main idea is that in case of weak coupling the description of two interacting
oscillators can be reduced to the phase dynamics

φ̇1,2 = ω1,2 + f1,2(φ2,1, φ1,2) + ξ1,2 , (4)

where φ1,2 are phases, ω1,2 are natural frequencies, and the terms f1,2 describe the
coupling between the systems. The random terms ξ1,2 describe noisy perturbation
and/or chaotic amplitude dynamics. Given the time series of phases, φ1,2(tk), we
consider the phase increments during some fixed time τ , ∆1,2(k) = φ2,1(tk + τ) −
φ(tk). These easily obtained new time series can be considered as generated by
some unknown two-dimensional noisy map

∆1,2 = ω1,2τ + F1,2(φ2,1, φ1,2) + η1,2 . (5)

Deterministic parts of this map can be estimated by fitting the dependencies of ∆1

and ∆2 on φ1, φ2. As the seeked functions F are 2π-periodic with respect to both
arguments, the natural choice of the probe function is the Fourier-series.

As soon as the map (5) is identified, the information on the directionality is
provided by the coefficients of two Fourier series approximating the unknown func-
tions F1,2. However, this information is not easy to interpret. Here we face the
problem how to quantify the direction of coupling by one number, what is definitely
ambiguous. One way to introduce such a number, called directionality index, was
suggested in [29]. Let F1,2 be the fits to F1,2. The sensitivity of the phase dynamics
of one system with respect to the variation of the phase of the second system can

be quantified by the average of the derivative
∂F1,2

∂φ2,1
. Namely, we characterize this
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by computing the coefficients

c21,2 = 〈
∂F1,2

∂φ2,1
〉 ,

where 〈〉 stays for averaging over φ1,2. Finally, the directionality index is computed
as

d(1,2) =
c2 − c1
c1 + c2

.

This index varies from 1 in the case of unidirectional coupling 1 → 2 to −1 in the
opposite case, 2 → 1. Intermediate values correspond to bidirectional coupling, and
the case d(1,2) = 0 can be denoted as symmetric coupling. Note, however, that
except for unidirectional driving, the definition of directionality is ambiguous.

We note also that the predictability (information-theoretical) approach can be
also applied to the phase data [30, 31]. For examples of application to the car-
diorespiratory and brain data see [30,32]. Statistical properties of the directionality
estimation are considered in [33].

5. Discussion: Potentials, Limitations and Pitfalls

Synchronization analysis proved to be a useful tool in experimental investigation
of different biological systems. So, tendency to phase locking of different order
n : m was revealed in a group of young athletes [10, 34] and in normal adults [12].
Strength and directionality of the cardiorespiratory interaction in healthy newborns
was studied in [11,30,35] in dependence on the age and sleep stages, what revealed
the dependence of the interaction parameters on the respiratory frequency and pro-
vided the information on the role of the kinetics involved in the vagal-atrial trans-
mission. As further examples we mention the prediction and localization of epileptic
activity [36, 37], analysis of the role of interbrain synchronization and localization
of pathological brain activity in Parkinson’s disease [25, 38], or nephron-nephron
interaction [39]. Stochastic phase synchronization in sensory systems and its role
in mediating sensory responses was studied in a series of papers of the St.Louis
group, in experiments with electrosensitive afferent neurons of the paddlefish and
with light-sensitive and mechanosensitive neurons of the crayfish, as well as theoret-
ically [15–17, 23, 40]. The algorithm for estimation of the directionality in coupling
was exploited for understanding of the functional connectivity in the brain during
a prescribed motor task [32, 41].

In what follows we discuss the limitations of this synchronization approach and
problems of an interpretation of the results. First of all we emphasize again that
blind application of the Hilbert transform to a broad band signal can provide phys-
ically meaningless results. The first step of the synchronization analysis — estima-
tion of instantaneous phases requires a careful choice of the preprocessing and is
crucial.

Next, we stress that the detection of phase relations between two signals does not
always mean that we deal with a synchronization process. These relations can be,
e.g. a manifestation of classical or stochastic resonance. Quantification and analysis
of time dependencies of such relations can nevertheless provide useful information
on the biological system, though one should be careful in the conclusions regarding
underlying physical mechanisms.
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The synchronization approach is based on the assumptions that we deal with
interacting self-sustained oscillators, and that the signals we measure represent the
dynamics of different systems. Violation of these assumptions, e.g. when two signals
reflect different variables of the same system or are input and output of some passive
transformer, makes the analysis hardly useful.

Finally, we mention that in the physiological literature, in particular in neuro-
science, the term “synchrony (synchronization)” is very often used as a synonym
to “correlation”. Hence, the cross-spectral (cross-correlation) technique is used as
a standard tool to quantify synchrony. If we understand synchronization in a phys-
ical sense, i.e. as an adjustment of phases and frequencies of interacting oscillating
objects, then it is clear that this tool is not an appropriate one. Indeed, high co-
herence in the spectral domain can be a result of other types of interaction than
weak synchronizing coupling, e.g. it can be observed in case of modulation. More-
over, the cross-spectral (cross-correlation) technique accounts for both amplitude
and phase interrelations. Generally, correlation (coherence) and synchronization
analysis address different aspects of interaction and can, e.g. lead to different re-
sults in localization of pathological brain activity [19, 25]. Next important point
is that sometimes the conclusion on the driver-response relationship (i.e. on the
directionality) is made on the basis of the phase of the cross-spectrum at a cer-
tain dominating frequency. It is concluded that the system that lead in phase
is the driver. This concept, inherited from the input-output approach to passive
transformers, definitely fails for coupled oscillators, where the phase shift in the
synchronous regime depends on coupling functions and natural frequencies of both
interacting systems, and these factors cannot be separated. [Indeed, considering
the simplest model of two interacting oscillators, φ1,2 = ω1,2 + ε1,2 sin(φ2,1 − φ1,2)
(Adler equations, cf. with Eqs. (4)), one easily obtains for the phase difference
φ1 − φ2 = arcsin ((ω1 − ω2)/(ε1 + ε2)).] The same is valid for the estimation of the
delays by re-computation of the phase shift (obtained from the cross-spectrum) into
conduction time (delay): justified in the treatment of passive systems, this approach
leads to spurious results if two signals represent coupled oscillators.

As the last remark, we mention that different notions of synchronization, such
as generalized and event synchronization are also used in the analysis of interde-
pendencies from multivariate data [42–46].
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[9] T. Kenner, H. Pessenhofer and G. Schwaberger, Method for the analysis of the en-
trainment between heart rate and ventilation rate, Pflügers Arch. 363 (1976) 263–265.
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