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12.1 Introduction

Synchronization, a basic nonlinear phenomenon, discovered at the beginning of the mod-
ern age of science by Huygens [1], is widely encountered in various fields of science,
often observed in living nature [2] and finds a lot of engineering applications [3, 4]. In
the classical sense, synchronization means adjustment of frequencies of self-sustained os-
cillators due to a weak interaction. The phase of oscillations may be locked by periodic
external force; another situation is the locking of the phases of two interacting oscillators.
One can also speak on “frequency entrainment”. Synchronization of periodic systems is
pretty well understood [3, 5, 6], effects of noise have been also studied [7]. In the context
of interacting chaotic oscillators, several effects are usually referred to as “synchroniza-
tion”. Due to a strong interaction of two (or a large number) of identical chaotic systems,
their states can coincide, while the dynamics in time remains chaotic [8, 9]. This effect is
called “complete synchronization” of chaotic oscillators. It can be generalized to the case
of non-identical systems [9, 10, 11], or that of the interacting subsystems [12, 13, 14].
Another well-studied effect is the “chaos–destroying” synchronization, when a periodic
external force acting on a chaotic system destroys chaos and a periodic regime appears
[15], or, in the case of an irregular forcing, the driven system follows the behavior of the
force [16]. This effect occurs for a relatively strong forcing as well. A characteristic fea-
ture of these phenomena is the existence of a threshold coupling value depending on the
Lyapunov exponents of individual systems [8, 9, 17, 18].Fr
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In this article we concentrate on the recently described effect of phase synchronization
of chaotic systems, which generalizes the classical notion of phase locking. Indeed, for
periodic oscillators only the relation between phases is important, while no restriction on
the amplitudes is imposed. Thus, we define phase synchronization of chaotic system as
appearance of a certain relation between the phases of interacting systems or between the
phase of a system and that of an external force, while the amplitudes can remain chaotic
and are, in general, non-correlated. The phenomenon of phase synchronization has been
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theoretically studied in [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. It has been observed in
experiments with electronic circuits [30] and lasers [31] and has been detected in physio-
logical systems [28, 32, 33].

We start with reviewing the classical results on synchronization of periodic self-sustained
oscillators in sect. 12.2. We use the description based on a circle map and on a rotation
number to characterize phase locking and synchronization. The very notion of phase and
amplitude of chaotic systems is discussed in Section 12.3. We demonstrate this taking
famouse Rössler and Lorenz models as examples. We show also that the dynamics of the
phase in chaotic systems is silimar to that in noisy periodic ones. The next section 12.4 is
devoted to effects of phase synchronization by periodic external force. We follow both a
statistical approach, based on the properties of the invariant distribution in the phase space,
and a topological method, where phase locking of individual periodic orbits embedded in
chaos is studied. Different aspects of synchronization phenomena in coupled chaotic sys-
tems are described in sect. 12.5. Here we give an interpretation of the synchronization
transition in terms of the Lyapunov spectrum of chaotic oscillations. We discuss also large
systems, such as lattices and globally coupled populations of chaotic oscillators. These
theoretical ideas are applied in sect. 12.8 to the data analysys problem. We discuss a pos-
sibility to detect phase synchronization in the observed bivariate data, and describe some
recent achievments.

12.2 Synchronization of periodic oscillations

In this section we remind basic facts on the synchronization of periodic oscillations (see,
e.g.,[34]). Stable periodic oscillations are represented by a stable limit cycle in the phase
space, and the dynamics �(t) of a phase point on this cycle can be described by

d�

dt
= !0; (12.1)

where !0 = 2�=T0, and T0 is the period of the oscillation. It is important that starting
from any monotonically growing variable � on the limit cycle (so that at one rotation �
increases by �), one can introduce the phase satisfying Eq. (12.1). Indeed, an arbitrary �
obeys _� = (�) with a periodic “instantaneous frequency” (� +�) = (�): The change

of variables � = !0
R �
0
[(�)]�1d� gives the correct phase, with the frequency !0 being

defined from the condition 2� = !0

R �
0
[�(�)]�1d�: A similar approach leads to correct

angle-action variables in Hamiltonian mechanics. We have performed this simple consid-
eration to underline the fact that the notions of the phase and of the phase synchronization
are universally applicable to any self-sustained periodic behavior independently on the
form of the limit cycle.

From (12.1) it is evident that the phase corresponds to the zero Lyapunov exponent,
while negative exponents correspond to the amplitude variables. Note that we do not
consider the equations for the amplitudes, as they are not universal.

When a small external periodic force with frequency � is acting on this periodic oscil-
lator, the amplitude is relatively robust, so that in the first approximation one can neglect
variations of the amplitude to obtain for the phase of the oscillator � and the phase of the
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external force  the equations

d�

dt
= !0 + "G(�;  ) ;

d 

dt
= � ; (12.2)

where G(�; �) is 2�-periodic in both arguments and " measures the strength of the forcing.
For a general method of derivation of Eq. (12.2) see [35]. The system (12.2) describes a
motion on a 2-dimensional torus that appears from the limit cycle under periodic perturba-
tion (see Fig. 12.1a,b). If we pick up the phase of oscillations � stroboscopically at times
tn = n 2�

�
, we get a circle map

�n+1 = �n + "g(�n) (12.3)

where the 2�-periodic function g(�) is defined via the solutions of the system (12.2).
According to the theory of circle maps (cf. [34]), the dynamics can be characterized by
the winding (rotation) number

� = lim
n!1

�n � �0

2�n

which is independent on the initial point �0 and can take rational and irrational values. If
it is irrational, then the motion is quasiperiodic and the trajectories are dense on the circle.
Otherwise, if � = p=q, there exists a stable orbit with period q such that �q = �0 + 2�p.
The latter regime is called phase locking or synchronization. In terms of the continuous-
time system (12.2), the winding number is the ratio between the mean derivative of the
phase � and the forcing frequency �

! =<
d�

dt
>= �� : (12.4)

For � irrational and rational one has, respectively, a quasiperiodic dense orbit and a reso-
nant stable periodic orbit on the torus (Fig. 12.1a,b).

The main synchronization region where ! = � corresponds to the winding number 1
(or, equivalently, 0 if we apply mod 2� operation to the phase; for frequencies this means
that we consider the difference ! � �), other synchronization regions are usually rather
difficult to observe. A typical picture of synchronization regions, called also “Arnold
tongues”, for the circle map (12.3) is shown in Fig. 12.1c.

Several remarks are in order.
1) The concept of phase synchronization can be applied only to autonomous continuous-

time systems. Indeed, if the system is discrete (i.e. a mapping), its period is an integer, and
this integer cannot be adjusted to some other integer in a continuous way. The same is true
for forced continuous-time oscillations (e.g. for the forced Duffing oscillator): here the fre-
quency of oscillations is intrinsically coupled to that of the forcing and cannot be adjusted
to some other frequency. We can formulate this also as follows: in discrete or forced sys-
tems there is no zero Lyapunov exponent, so there is no corresponding marginally stable
variable (the phase) that can be governed by small external perturbations.

2) The synchronization condition (12.4) does not mean that the difference between
the phase � of an oscillator and that of the external force  (or between phases of two
oscillators) must be a constant, as is sometimes assumed (see, e.g. [36]). Indeed, (12.2)
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Figure12.1: Quasiperiodic (a) and periodic flow (b) on the torus; a stable periodic orbit is shown by
the bold line. (c): The typical picture of Arnold tongues (with winding numbers atop) for the circle
map.

implies, that to enable this, the function G should depend not on separate phases but only
on their difference: G(�;  ) = G(� �  ). One can expect that this degeneracy occurs if
the form of the oscillations coincides with the form of the external force, e.g. if quasihar-
monic oscillations are driven by a sinusoidal force. In general, we can only expect that the
deviations of the phase are bounded:

jq�(t) � p (t)j < const : (12.5)

3) The winding number is a continuous function of system parameters; typically it
looks like a devil’s staircase. Take the main phase-locking region. Continuity means that
near the de-synchronization transition the mean oscillation frequency is close to the exter-
nal one. As the external frequency � is varied, the de-synchronization transition appears as
saddle-node bifurcation, where a stable p=q - periodic orbit collides with the correspond-
ing unstable one, and both disappear. Near this bifurcation point, similarly to the type-I
intermittency [37], a trajectory of the system spends a large time in the vicinity of the
just disappeared periodic orbits; in the course of time evolution the long epochs when the
phases are locked according to (12.5), are interrupted with relatively short time intervals
where a phase slip occurs.

4) In the presence of external noise �(t) one can consider instead of (12.2) the Langevin
equation

d�

dt
= !0 + "G(�;  ) + �(t) ;

d 

dt
= � : (12.6)

Equivalently, one can model the effect of noise by adding to the mapping (12.3) the noisy
term �:

�n+1 = �n + "g(�n) + �n (12.7)

If the noise is small, the frequencies can be nearly locked, i.e. the averaged relation (12.4)
is fulfilled. Large noise can cause phase slips, so that the phase performs a random–walk–
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like motion. In the case of unbounded (e.g. Gaussian) noise the mean phase drift is gen-
erally non-zero and, strictly speaking, the synchronization region vanishes. Nevertheless,
the largest phase-locking intervals survive as regions of nearly constant mean frequency
!. For detailed description of a simple model of synchronization in the presence of noise
see [7].

12.3 Phase of a chaotic oscillator

12.3.1 Definition of the phase

The first problem in extending the basic notions from periodic to chaotic oscillations is
to properly define a phase. There seems to be no unambiguous and general definition of
phase applicable to an arbitrary chaotic process. Roughly speaking, we want to define
phase as a variable which is related to the zero Lyapunov exponent of a continuous-time
dynamical system with chaotic behavior. Moreover, we want this phase to correspond to
the phase of periodic oscillations satisfying (12.1).

To be not too abstract, we illustrate a general approach below on the well-known
Rössler system. A projection of the phase portrait of this autonomous 3-dimensional sys-
tem of ODEs (see eqs. (12.14) below) is shown in Fig. 12.2.
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Figure12.2: Projection of the phase potrait of the Rössler system (a). The horizontal line shows the
Poincaré section that is used for computation of the amplitude mapping (b) and dependence of the
return time (rotation period) on the amplitude (c).
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Suppose we can define a Poincaré map for our autonomous continuous-time system.
Then, for each piece of a trajectory between two cross-sections with the Poincaré surface
we define the phase just proportional to time, so that the phase increment is 2� at each
rotation:

�(t) = 2�
t� tn

tn+1 � tn
+ 2�n; tn � t < tn+1: (12.8)

Here tn is the time of the n-th crossing of the secant surface. Note that for periodic oscil-
lations corresponding to a fixed point of the Poincaré map, this definition gives the correct
phase satisfying Eq. (12.1). For periodic orbits having many rotations (i.e. corresponding
to periodic points of the map) we get a piecewise-linear function of time, moreover, the
phase grows by a multiple of 2� during the period. The second property is in fact useful,
as it represents the organization of periodic orbits inside the chaos in a proper way. The
first property demonstrates that the phase of a chaotic system cannot be defined as unam-
biguously as for periodic oscillations. In particular, the phase crucially depends on the
choice of the Poincaré surface.

Nevertheless, defined in this way, the phase has a physically important property: its
perturbations neither grow nor decay in time, so it does correspond to the direction with
the zero Lyapunov exponent in the phase space. We note also, that this definition of the
phase directly corresponds to the special flow construction which is used in the ergodic
theory to describe autonomous continuous-time systems [38].

For the Rössler system Fig. 12.2(a) a proper choice of the Poincaré surface may be
the halfplane y = 0; x < 0. For the amplitude mapping xn ! xn+1 we get a unimodal
map Fig. 12.2(b) (the map is essentially one-dimensional, because the coordinate z for the
Rössler attractor is nearly constant on the chosen Poincaré surface). In this and in some
other cases the phase portrait looks like rotations around a point that can be taken as the
origin, so we can also introduce the phase as the angle between the projection of the phase
point on the plane and a given direction on the plane (see also [22, 39]):

�P = arctan(y=x) : (12.9)

Note that although the two phases � and �P do not coincide microscopically, i.e on a time
scale less than the average period of oscillation, they have equal average growth rates. In
other words, the mean frequency defined as the average of d�P =dt over large period of
time coincides with a straightforward definition of the mean frequency via the average
number of crossings of the Poincaré surface per unit time.

12.3.2 Dynamics of the phase of chaotic oscillations

In contrast to the dynamics of the phase of periodic oscillations, the growth of the phase
in the chaotic case cannot generally be expected to be uniform. Instead, the instantaneous
frequency depends in general on the amplitude. Let us hold to the phase definition based
on the Poincaré map, so one can represent the dynamics as (cf. [20])

An+1 = M(An) ; (12.10)
d�

dt
= !(An) � !0 + F (An) : (12.11)
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As the amplitude A we take the set of coordinates for the point on the secant surface; it
does not change during the growth of the phase from 0 to 2� and can be considered as
a discrete variable; the transformation M defines the Poincaré map. The phase evolves
according to (12.11), where the “instantaneous” frequency ! = 2�=(t n+1 � tn) depends
in general on the amplitude. Assuming the chaotic behavior of the amplitudes, we can
consider the term !(An) as a sum of the averaged frequency !0 and of some effective
noise F (A); in exceptional cases F (A) may vanish. For the Rössler attractor the “period”
of the rotations (i.e. the function 2�=!(An)) is shown in Fig. 12.2(c). This period is
not constant, so the function F (A) does not vanish, but the variations of the period are
relatively small.

Hence, the Eq. (12.11) is similar to the equation describing the evolution of phase of
periodic oscillator in the presence of external noise. Thus, the dynamics of the phase is
generally diffusive: for large t one expects

< (�(t) � �(0)� !0t)
2 >/ Dpt ;

where the diffusion constant Dp determines the phase coherence of the chaotic oscilla-
tions. Roughly speaking, the diffusion constant is inversely proportional to the width of
the spectral peak calculated for the chaotic observable [40].

Generalizing Eq. (12.11) in the spirit of the theory of periodic oscillations to the case
of periodic external force, we can write for the phase

d�

dt
= !0 + "G(�;  ) + F (An) ;

d 

dt
= � : (12.12)

Here we assume that the force is small (of order of ") so that it affects only the phase,
and the amplitude obeys therefore the unperturbed mapping M . This equation is similar
to Eq. (12.6), with the amplitude-depending part of the instantaneous frequency playing
the role of noise. Thus, we expect that in general the synchronization phenomena for pe-
riodically forced chaotic system are similar to those in noisy driven periodic oscillations.
One should be aware, however, that the “noisy” term F (A) can be hardly explicitly calcu-
lated, and for sure cannot be considered as a Gaussian Æ-correlated noise as is commonly
assumed in the statistical approaches [7, 41].

12.4 Phase synchronization by external force

12.4.1 Synchronization region

We describe here the effect of phase synchronization of chaotic oscillations by periodic ex-
ternal force, taking as examples two prototypic models of nonlinear dynamics: the Lorenz

_x = 10(y � x);
_y = 28x� y � xz;

_z = �8=3 � z + xy +E cos �t:
(12.13)

and the Rössler
_x = �y � z +E cos �t ;
_y = x+ 0:15y ;
_z = 0:4 + z(x� 8:5) :

(12.14)
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Figure12.3: The phase synchronization regions for the Rössler (a) and the Lorenz (b) systems.

oscillators. In the absence of forcing, both are 3-dimensional dissipative systems which
admit a straightforward construction of the Poincaré maps. Moreover, we can simply use
the phase definition (12.9), taking the original variables (x; y) for the Rössler system and
the variables (

p
x2 + y2 � u0; z � z0) for the Lorenz system (where u0 = 12

p
2 and

z0 = 27 are the coordinates of the equilibrium point, the “center of rotation”). The mean
rotation frequency can be thus calculated as


 = lim
t!1

2�
Nt

t
(12.15)

where Nt is the number of crossings of the Poincaré section during observation time t.
This method can be straightforwardly applied to the observed time series, in the simplest
case one can, e.g., take for Nt the number of maxima (of x(t) for the Rössler system and
of z(t) for the Lorenz one).

Dependence of the obtained in this way frequency
 on the amplitude and frequency of
the external force is shown in Fig. 12.3. Synchronization here corresponds to the plateau

 = �. One can see that the synchronization properties of these two systems differ es-
sentially. For the Rössler system there exists a well-expressed region where the systems
are perfectly locked. Moreover, there seems to be no amplitude threshold of synchro-
nization (cf. Fig. 12.1c, where the phase-locking regions start at " = 0). It appears that
the phase locking properties of the Rössler system are practically the same as for a peri-
odic oscillator. On the contrary, for the Lorenz system we observe the frequency locking
only as a tendency seen at relatively large forcing amplitudes, as this should be expected
for oscillators subject to a rather strong noise. In this respect, the difference between
Rössler and Lorenz systems can be described in terms of phase diffusion properties (see
Sect. 12.3.2). Indeed, the phase diffusion coefficient for autonomous Rössler system is
extremely small Dp < 10�4, whereas for the Lorenz system it is several oder of magni-
tude larger, Dp � 0:2 [24]. This difference in the coherence of the phase of autonomous
oscillations implies different response to periodic forcing.

In the following sections we discuss the phase synchronization of chaotic oscillations
from the statistical and the topological viewpoints.
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(a) (b)

Figure12.4: Distribution inside (a) and outside (b) the synchronization region for the Rössler system,
shown with black dots. The autonomous Rössler attractor is shown with gray.

12.4.2 Statistical approach

We define the phase of an autonomous chaotic system as a variable that corresponds to
invariance with respect to time shifts. Therefore, the invariant probability distribution as
a function of the phase is nearly uniform. This follows from the ergodicity of the system:
the probability is proportional to the time a trajectory is spending in a region of the phase
space, and according to the definition (12.8) the phase motion is (piecewise) uniform. With
external forcing, the invariant measure depends explicitly on time. In the synchronization
region we expect that the phase of oscillations nearly follows the phase of the force, while
without synchronization there is no definite relation between them. Let us observe the
oscillator stroboscopically, at the moments corresponding to some phase  0 of the external
force. In the synchronous state the probability distribution of the oscillator phase will be
localized near some preferable value (which of course depends on the choice of  0). In the
non-synchronous state the phase is spread along the attractor. We illustrate this behavior of
the probability density in Fig. 12.4. One can say that synchronization means localization
of the probability density near some preferable time-periodic state. In other words, this
means appearance of the long-range correlation in time and of the significant discrete
component in the power spectrum of oscillations.

Let us consider now the ensemble interpretation of the probability. Suppose we take
a large ensemble of identical copies of the chaotic oscillator which differ only by their
initial states, and let them evolve under the same periodic forcing. After the transient, the
projections of the phase state of each oscillator onto the plane x; y form the cloud that
exactly corresponds to the probability density. Let us now consider the ensemble average
of some observable. Without synchronization the cloud is spread over the projection of the
attractor (Fig. 12.4b), and the average is small: no significant average field is observed. In
the synchronous state the probability is localized (Fig. 12.4a), so the average is close to
some middle point of the cloud; this point rotates with the frequency � and one observes
large regular oscillations of the average field. Hence, the synchronization can be easily
indicated through the appearance of a large (macroscopic) mean field in the ensemble.
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Physically, this effect is rather clear: unforced chaotic oscillators are not coherent due to
internal chaos, thus the summation of their fields yields a small quantity. Being synchro-
nized, the oscillators become coherent with the external force and thereby with each other,
so the coherent summation of their fields produces a large mean field.

An important consequence of the statistical approach described above is that the phase
synchronization can be characterized without explicit computation of the phase and/or the
mean frequency: it can be indicated implicitly by the appearance of a macroscopic mean
field in the ensemble of oscillators, or by the appearance of the large discrete component
in the spectrum. Although there may be other mechanisms leading to the appearance of
macroscopic order, the phase synchronization appears to be one of the most common ones.

12.4.3 Interpretation through embedded periodic orbits

In order to understand structural metamorphoses of attracting chaotic sets under the action
of the synchronizing force, it is convenient to look at the properties of individual periodic
orbits embedded into the strange attractors. Unstable periodic orbits are known to build
a kind of “skeletons” for chaotic sets [34]; in particular, each of the systems (12.13) and
(12.14) in the absence of forcing possesses infinite number of periodic solutions with two-
dimensional unstable manifolds. Let us pick up one of these solutions and consider the
dynamics on its two-dimensional global stable manifold. From this point of view, there is
no difference from familiar problem of the synchronization of stable periodic oscillations
by external driving force (see Sect. 12.2 above): the winding number � can be introduced,
and in the parameter space one should observe synchronization inside the Arnold tongues
(locking regions) which correspond to rational values of � (cf. Fig. 12.1). Like in the
situation described in Sect. 12.2 above, an invariant torus evolves from the periodic orbit
of the autonomous chaotic system. Trajectories wind around this torus; inside the Arnold
tongues there are two closed orbits on its surface: the attracting one which will call below
“phase-stable”, and the repelling one, called “phase-unstable”. On the border of the lock-
ing region these two orbits coalesce and disappear via the tangent bifurcation. Outside the
tongues the motion corresponding to this particular periodic orbit is not synchronized and
the trajectories are dense on the torus.

Since in the entire phase space of the autonomous system the considered periodic so-
lution is unstable, the torus in the weakly driven system is also unstable. On the plane of
the parameters E and � the tip of the main Arnold tongue lies in the point E = 0; � = ! i

where !i is the individual mean frequency of the considered autonomous orbit.This fre-
quency differs from the formally defined frequency of the periodic solution 2�=T i where
Ti is a period of the orbit: we take here into account also the number of round trips n i of
the orbit and write !i = 2�ni=Ti). Naturally, the values of !i differ for different periodic
orbits; however, in many autonomous dissipative systems (like in Eq. (12.14)) chaos man-
ifests itself in the form of nearly isochronous rotations, and the frequencies ! i are very
close to each other. Respectively, the Arnold tongues overlap (Fig. 12.5), and one can find
the parameter region in which all periodic motions are locked by the external force. If
the forcing remains moderate, this is the overlapping region for the leftmost and the right-
most Arnold tongues which correspond to the periodic orbits of the autonomous system
with, respectively, the smallest and the largest values of ! i. Inside this region the chaotic
trajectories repeatedly visit the neighborhoods of the tori; moving along the surface of a
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Figure12.5: The Arnold tongues for the unstable periodic orbits in the Rössler system with different
number of rotations around the origin. In the shadowed region the mean frequency of oscillations
virtually coincides with the forcing frequency �.

torus they approach the phase-stable solution and remain there for a certain time before
the “transverse” (amplitude) instability bounces them to another torus. Since all periodic
motions are locked, the phase remains localized within the bounded domain: one observes
phase synchronization.

In Fig. 12.6 we show the phase portraits of the forced Rössler oscillator in the synchro-
nized and non-synchronized states. The Poincaré maps are presented taken at the secant
surface y = 0, the coordinates are the variable x of the Rössler system and the phase of
the external force  (note that this representation is complementary to Fig. 12.4, where
the phase of the external force is fixed). On these mappings the phase-stable orbits are
represented by finite invariant subsets of points, they form a kind of the “skeleton” for the
attractor. Similarly, phase-unstable orbits are a skeleton of the repeller (which is not shown
in Fig. 12.6a); the latter plays a role of a barrier which separates the attraction domains of
the two equivalent attractors whose phases differ by 2�. On approaching the boundary of
the locked region from inside, the corresponding phase-stable and phase-unstable periodic
orbits come closer. When they coalesce, attractor and repeller collide in the points of the
“glued” orbit. After the bifurcation, a “channel” appears in the barrier, enabling phase
slips during which the phase changes by �2�. These slips appear in Fig. 12.6b as the rare
points with the phases  < 3 and  > 5:5.

Since the Arnold tongues for different periodic orbits do not coincide, the onset of
frequency lockings for these orbits occurs at different values of the frequency of external
force. As a result, close to the threshold the synchronized segments of the trajectory alter-
nate with the non-synchronized ones, and the whole transition to phase synchronization is
smeared. The behavior observed at this transition is a specific kind of intermittency which
we call “eyelet” since the seldom leakages from the locked state require the very precise
hitting of certain small regions in the phase space.

The following description sketches the features of the transition mechanism (see [27]
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Figure 12.6: The Poincaré maps of the forced Rössler oscillator inside and outside the synchro-
nization region. The markers denote the points belonging to the period-2 cycle, they lie apparently
“outside” the attractor.

for the accurate derivation). The dynamics of the phase can be reasonably well approxi-
mated by the circle mapping. Just outside the tangent bifurcation the characteristic time
intervals between the phase slips obey the inverse square root law: � � C1j� � �cj�1=2
where �c is the bifurcation value of the frequency �. Let the trajectory be reinjected into
the vicinity of the respective unstable torus, at a small distance d0 from it. To exhibit the
slip, the trajectory should remain close to the torus for the time interval not smaller than
� . Within this time the distance to the torus grows: d� � d0e

�� where � is the positive
Lyapunov exponent of the torus (for the weak forcing it is close to the Lyapunov exponent
of the respective unstable periodic orbit in the autonomous system); we require d � to re-
main small: d� < C2. Assuming that the density of invariant probability on the attractor
is (locally) uniform we estimate the probability to undergo a phase slip as proportional to
the length of the interval d0; for the latter holds

d0 < C2 exp(���) � C2 exp(��C1j� � �cj�1=2) :

Just outside the border of the synchronization region this interval is an extremely small
“eyelet”, and phase slips are exceptionally rare. In its turn, the increment Æ of the rotation
number (with respect to the value of � inside the locked region) is proportional to the
averaged number of phase slips per mapping iteration, which leaves us with log Æ � �j��
�cj�1=2 (Fig. 12.7).

The exponentially slow eyelet intermittency is the reason why the region of phase
synchronization often appears to be larger than the overlapping part of the Arnold tongues
and in certain cases seems to be observed also under small forcing amplitudes, for which
there is no full phase synchronization at all. Only after a sufficiently large number of
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Figure12.7: The average number of phase slips at the border of the synchronization region vs. the
deviation of the forcing amplitude ".

tangent bifurcations the probability of phase slip becomes noticeable, and one observes a
deviation of the mean observed frequency from the frequency of the external force.

This picture is basically confirmed by numerical comparison of the domain of phase
synchronization for the forced Rössler equations with the locked regions of individual pe-
riodic orbits (Fig. 12.5,12.7). However, certain peculiarities of the Rössler system do not
fit the predictions. Phase synchronization is observed well below the intersection of the
outermost tongues, i.e. in the domain where only a part of periodic orbits is synchro-
nized. Thus, it appears that some periodic orbits do not contribute to the phase rotation.
In the phase space, these orbits seem to lie outside of the bulk of the attractor (Fig. 12.6a);
consequently, their vicinities are visited extremely seldom and possible phase slips are
simply not detectable. Why some periodic orbits under the influence of forcing become
“non-observable”, remains an open question.

Analysis in terms of unstable periodic orbits allows one to understand the fine features
of the onset of phase synchronization. We have discussed here the simplest case when the
borders of the region of full phase synchronization are given by the phase-locking regions
of the periodic orbits. More complex situations can occur if one of these borders is reached
on a chaotic everywhere dense trajectory. Then the attractor and the repeller can collide in
a dense set of points; similar situation is encountered in a quasiperiodically forced circle
map [42, 43].

12.5 Phase synchronization in coupled systems

Now we demonstrate the effects of phase synchronization in coupled chaotic oscillators.
We start with the simplest case of two interacting systems, and then briefly discuss oscil-
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lator lattices, globally coupled systems, and space-time chaos.

12.5.1 Synchronization of two interacting oscillators

We consider here two non-identical coupled Rössler systems

_x1;2 = �!1;2y1;2 � z1;2 + "(x2;1 � x1;2);
_y1;2 = !1;2x1;2 + ay1;2;

_z1;2 = f + z1;2(x1;2 � c);
(12.16)

where a = 0:165, f = 0:2, c = 10. The parameters !1;2 = !0 ��! and " determine the
mismatch of natural frequencies and the coupling, respectively.

Again, like in the case of periodic forcing, we can define the mean frequencies 
 1;2 of
oscillations of each system, and study the dependence of the frequency mismatch 
 2�
1

on the parameters �!; ". This dependence is shown in Fig. 12.8 and demonstrates a large
region of synchronization between two oscillators.
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Figure12.8: Synchronization of two coupled Rössler oscillators; !0 = 1.

It is instructive to characterize the synchronization transition by means of the Lyapunov
exponents (LE). The 6-order dynamical system (12.16) has 6 LEs (see Fig. 12.9). For zero
coupling we have a degenerate situation of two independent systems, each of them has one
positive, one zero, and one negative exponent. The two zero exponents correspond to the
two independent phases. With coupling, the phases become dependent and the degeneracy
must be removed: only one LE should remain exactly zero. We observe, however, that for
small coupling also the second zero Lyapunov exponent remains extremely small (in fact,
numerically indistinguishable from zero). Only at relatively stronger coupling, when the
synchronization sets on, the second LE becomes negative: now the phases are dependent
and a relation between them is stable. Note that the two positive exponents remain positive
which means that the amplitudes remain chaotic and independent: the coupled system
remains in the state of hyperchaos.
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Figure12.9: The Lyapunov exponents � (bottom panel, only the 4 largest LEs are depicted) and the
frequency difference vs. the coupling " in the coupled Rössler oscillators; !0 = 0:97, �! = 0:02.
Transition to the phase ("p) and to the lag synchronization ("l) are marked.

With the increase of coupling one of the positive LE becomes smaller. Physically this
means that not only the phases are locked, but the difference between the amplitudes is
suppressed by coupling as well. At a certain coupling only one LE remains positive, so
one can expect synchronization both in phases and amplitudes. As the systems are not
identical (due to the frequency mismatch), their states cannot be identical: x 1(t) 6= x2(t).
However, almost perfect correspondence between the time-shifted states of the systems
can be observed: x1(t) � x2(t ��t). This phenomenon is called “lag synchronization”
[26]. With further increase of the coupling " the lag �t decreases and the states of two
systems become nearly identical, like in case of complete synchronization (see the paper
by Kocarev and Parlitz in this volume [14]).

12.5.2 Synchronization in a Population of Globally Coupled Chaotic
Oscillators

A number of physical, chemical and biological systems can be viewed at as large pop-
ulations of weakly interacting non-identical oscillators [35]. One of the most popular
models here is an ensemble of globally coupled nonlinear oscillators (often called “mean-
field coupling”). A nontrivial transition to self-synchronization in a population of periodic
oscillators with different natural frequencies coupled through a mean field has been de-
scribed by Kuramoto [35, 44]. In this system, as the coupling parameter increases, a sharp
transition is observed for which the mean field intensity serves as an order parameter. This
transition owes to a mutual synchronization of the periodic oscillators, so that their fields
become coherent (i.e. their phases are locked), thus producing a macroscopic mean field.
In its turn, this field acts on the individual oscillators, locking their phases, so that the
synchronous state is self-sustained. Different aspects of this transition have been studied
in [45, 46, 47], where also an analogy with the second–order phase transition has been
exploited.

A similar effect can be observed in a population of non-identical chaotic systems, e.g.
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the Rössler oscillators
_xi = �!iyi � zi + "X;

_yi = !ixi + ayi;

_zi = 0:4 + zi(xi � 8:5);
(12.17)

coupled via the mean field X = N�1
PN

1 xi. Here N is the number of elements in the
ensemble, " is the coupling constant, a and ! i are parameters of the Rössler oscillators.
The parameter !i governs the natural frequency of an individual system. We take a set
of frequencies !i which are Gaussian-distributed around the mean value !0 with variance
(�!)2. The Rössler system typically shows windows of periodic behavior as the parame-
ter ! is changed; therefore we usually choose a mean frequency ! 0 in a way that we avoid
large periodic windows. In our computer simulations we solve numerically Eqs. (12.17)
for rather large ensembles N = 3000� 5000.

With an increase of the coupling strength ", the appearance of a non-zero macroscopic
mean field X is observed [22]. This indicates the phase synchronization of the Rössler
oscillators that arises due to their interaction via mean field. This mean field is large,
if the attractors of individual systems are phase-coherent (parameter a = 0:15) and the
phase is well-defined. On the contrary, in the case of the funnel attractor a = 0:25, when
the oscillations look wild, and the imaging point makes large and small loops around the
origin, the field is rather small, and there seems to be no way to choose the Poincaré section
unambiguously. Nevertheless, in both cases synchronization transition is clearly indicated
by the onset of the mean field, without computation of the phases themselves.

12.6 Lattice of chaotic oscillators

If chaotic oscillators are ordered in space and form a lattice, only the nearest neighbors in-
teract. Such a situation is relevant for chemical systems, where homogeneous oscillations
are chaotic, and the diffusive coupling can be modeled with dissipative nearest neighbors
interaction [48, 39]. In a lattice, one can expect complex spatio-temporal synchronization
structures to be observed.

Consider as a model a 1-dimensional lattice of R”ossler oscillators with local dissipa-
tive coupling:

_xj = �!jyj � zj ;

_yj = !jxj + ayj + "(yj+1 � 2yj + yj�1);
_zj = 0:4 + (xj � 8:5)zj :

(12.18)

Here the index j = 1; : : : ; N counts the oscillators in the lattice and " is the coupling
coefficient. To study synchronization in a lattice of non-identical oscillators, we introduce
a linear distribution of natural frequencies !j

!j = !1 + Æ(j � 1) (12.19)

where Æ is the frequency mismatch between neighboring sites. Depending on the values
of Æ we observed two scenarios of transition to synchronization [23]. For small Æ, the
transition occurs smoothly, i.e. all the elements along the chain gradually adjust their fre-
quencies. If the frequency mismatch is larger, clustering is observed: the oscillators build
phase-synchronized groups having different mean frequencies. At the borders between
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clusters phase slips occur; this can be considered as appearance of defects in the spatio-
temporal representation. Both regular and irregular patterns of defects have been reported
in ref. [23].

12.7 Synchronization of space-time chaos

The idea of phase synchronization can be also applied to space-time chaos. E.g., in the
famous complex Ginzburg-Landau equation [49, 50, 51]

@ta = (1 + i!0)a� (1 + i�)jaj2a+ (1 + i�)@2t a ; (12.20)

there are regimes where the complex amplitude a rotates with some mean frequency, but
these rotations are not regular: the phase deviates irregularly in space and time (this regime
is called “phase turbulence”). Let us now add periodic in time spatially homogeneous
forcing of amplitude B and frequency ! e. Transition into a reference frame rotating with
this external forcing (a! A � a exp(�i!et)) reduces Eq. (12.20) to

@tA = (1 + i�)A� (1 + i�)jAj2A+ (1 + i�)@2tA+B ; (12.21)

where � = !0 � !e is the frequency mismatch between the frequency of the external
force and the frequency of small oscillations. An analysis of different regimes in the sys-
tem (12.21) has been recently performed [52]. As one can expect, a very strong force
suppresses turbulence and the spatially homogeneous periodic in time synchronous oscil-
lations are observed, while a small force has no significant influence on the turbulent state.
A nontrivial regime is observed for intermediate forcing: in some parameter range the ir-
regular fluctuations of the phase are not completely suppressed but are bounded: the whole
system oscillates “in phase” with the external force and is highly coherent, although some
small chaotic variations persist. One can easily see an analogy to the phase synchroniza-
tion of chaotic oscillators, where chaos remains while the phase becomes entrained.

12.8 Detecting synchronization in data

The analysis of relation between the phases of two systems, naturally arising in the context
of synchronization, can be used to approach a general problem in time series analysis.
Indeed, bivariate data are often encountered in the study of real systems, and the usual aim
of the analysis of such data is to find out whether two signals are dependent or not. As
experimental data are very often non-stationary, the traditional techniques, such as cross–
spectrum and cross–correlation analysis [53], or non–linear characteristics like generalized
mutual information [54] or maximal correlation [55] have their limitations. From the other
side, sometimes it is reasonable to assume that the observed signals originate from two
weakly interacting systems. The presence of this interaction can be found by means of
the analysis of instantaneous phases of these signals. These phases can be unambiguously
obtained with the help of the analytic signal concept based on the Hilbert transform (for
an introduction see [53, 24]). It goes as follows: for an arbitrary scalar signal s(t) one can
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construct a complex function of time (analytic signal) �(t) = s(t) + i~s(t) = A(t)e i�H (t)

where ~s(t) is the Hilbert transform of s(t),

~s(t) = ��1P.V.
Z
1

�1

s(�)

t� �
d� ; (12.22)

andA(t) and �H(t) are the instantaneous amplitude and phase (P.V. means that the integral
is taken in the sense of the Cauchy principal value).

As recently shown in [19, 24], the phase defined by this method from an appropriately
chosen oscillatory observable practically coincides with the phase of an oscillator com-
puted according to one of the definitions given in Sec. 12.3. Therefore, the analysis of
the relationship between these Hilbert phases appears to be an appropriate tool to detect
synchronous epochs from experimental data and to check for a weak interaction between
systems under study. It is very important that the Hilbert transform does not require sta-
tionarity of the data, so we can trace synchronization transitions even from nonstationary
data.

We recall again the above mentioned similarity of phase dynamics in noisy and chaotic
oscillators (see Sect. 12.3.2). A very important consequence of this fact is that, using
the synchronization approach to data analysis, we can avoid the hardly solvable dilemma
“noise vs chaos”: irrespectively of the origin of the observed signals, the approach and
techniques of the analysis are unique. Quantification of synchronization from noisy data
is considered in [56].

Application of these ideas allowed us to find phase locking in the data characterizing
mechanisms of posture control in humans while quiet standing [32, 28]. Namely, the
small deviations of the body center of gravity in anterior–posterior and lateral directions
were analyzed. In healthy subjects, the regulation of posture in these two directions can
be considered as independent processes, and the occurrence of some interrelation possibly
indicates a pathology. It is noteworthy that in several records conventional methods of time
series analysis, i.e. the cross–spectrum analysis and the generalized mutual information
failed to detect any significant dependence between the signals, whereas calculation of the
instantaneous phases clearly showed phase locking.

Complex synchronous patterns have been found recently in the analysis of interaction
of human cardiovascular and respiratory systems [33]. This finding possibly indicates the
existence of a previously unknown type of neural coupling between these systems.

Analysis of synchronization between brain and muscle activity of a Parkinsonian pa-
tient [56] is relevant for a fundamental problem of neuroscience: can one consider the
synchronization between different areas of the motor cortex as a necessary condition for
establishing of the coordinated muscle activity? It was shown [56] that the temporal evo-
lution of the coordinated pathologic tremor activity directly reflects the evolution of the
strength of synchronization within a neural network involving cortical motor areas. Addi-
tionally, the brain areas with the tremor-related activity were localized from noninvasive
measurements.
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12.9 Conclusions

The main idea of this paper is to demonstrate that synchronization phenomena in peri-
odic, noisy and chaotic oscillators can be understood within a unified framework. This is
achieved by extending the notion of phase to the case of continuous-time chaotic systems.
Because the phase is introduced as a variable corresponding to the zero Lyapunov expo-
nent, this notion should be applicable to any autonomous chaotic oscillator. Although we
are not able to propose a unique and rigorous approach to determine the phase, we have
shown that it can be introduced in a reasonable and consistent way for basic models of
chaotic dynamics. Moreover, we have shown that even in the case when the phases are
not well-defined, i.e. they cannot be unambiguously computed explicitly, the presence of
phase synchronization can be demonstrated indirectly by observations of the mean field
and the spectrum, i.e. independently of any particular definition of the phase.

In a rather general framework, any type of synchronization can be considered as ap-
pearance of some additional order inside the dynamics. For chaotic systems, e.g., the
complete synchronization means that the dynamics in the phase space is restricted to
a symmetrical submanifold. Thus, from the point of view of topological properties of
chaos, the synchronization transition usually means the simplification of the structure of
the strange attractor. In discussing the topological properties of phase synchronization,
we have shown that the transition to phase synchronization corresponds to splitting of the
complex invariant chaotic set into distinctive attractor and repeller. Analogously to the
complete synchronization, which appears through the pitchfork bifurcation of the strange
attractor, one can say that the phase synchronization appears through tangent bifurcation
of strange sets.

Because of the similarity in the phase dynamics, one may expect that many, if not all,
synchronization features known for periodic oscillators can be observed for chaotic sys-
tems as well. Indeed, here we have described effects of phase and frequency entrainment
by periodic external driving, both for simple and space-distributed chaotic systems. Fur-
ther, we have described synchronization due to interaction of two chaotic oscillators, as
well as self-synchronization in globally coupled large ensembles.

As an application of the developed framework we have discussed a problem in data
analysis, namely detection of weak interaction between systems from bivariate data. The
three described examples of the analysis of physiological data demonstrate a possibility to
detect and characterize synchronization even from nonstationary and noisy data.

Finally, we would like to stress that contrary to other types of chaotic synchronization,
the phase synchronization phenomena can happen already for very weak coupling, which
offers an easy way of chaos regulation.
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[33] C. Schäfer, M. G. Rosenblum, J. Kurths, and H.-H. Abel. Heartbeat synchronized
with ventilation. Nature, 392(6673):239–240, March 1998.

[34] E. Ott. Chaos in Dynamical Systems. Cambridge Univ. Press, Cambridge, 1992.

[35] Y. Kuramoto. Chemical Oscillations, Waves and Turbulence. Springer, Berlin, 1984.

[36] D. Y. Tang and N. R. Heckenberg. Synchronization of mutually coupled chaotic
systems. Phys. Rev. E, 55(6):6618–6623, 1997.
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