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From Phase to Lag Synchronization in Coupled Chaotic Oscillators
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We study synchronization transitions in a system of two coupled self-sustained chaotic oscillato
We demonstrate that with the increase of coupling strength the system first undergoes the transition
phase synchronization. With a further increase of coupling, a new synchronous regime is observ
where the states of two oscillators are nearly identical, but one system lags in time to the other. W
describe this regime as a state with correlated amplitudes and a constant phase shift. These transi
are traced in the Lyapunov spectrum. [S0031-9007(97)03271-7]
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Synchronization phenomena in coupled chaotic syste
have been extensively studied in the context of laser d
namics [1], electronic circuits [2,3], chemical and biolog
cal systems [4], and secure communication [5]. Comple
generalized, and phase synchronizations of chaotic osci
tors have been described theoretically and observed exp
mentally. Complete (full) synchronization (CS) implie
coincidence of states of interacting systems,x1std  x2std
[6–8]; it appears only if interacting systems are ident
cal. Otherwise, if the parameters of coupled oscillato
slightly mismatch, the states are closejx1std 2 x2stdj ø 0
but remain different [7,9]. A generalized synchronizatio
(GS) [10], introduced for drive-response systems, is d
fined as the presence of some functional relation betwe
the states of response and drive, i.e.,x2std  F fx1stdg
[11]. The phase synchronization (PS) described in [12,1
and experimentally observed in [14] means entrainme
of phases of chaotic oscillators, whereas their amplitud
remain chaotic and noncorrelated; the notion of phase
discussed in details in [15]. The relation between the
different types of synchronization and the scenarios of tra
sitions to or between them have not been addressed ye

In this Letter we study synchronization of symmetr
cally couplednonidenticaloscillators. We demonstrate
that, with the increase of coupling, first the transition from
nonsynchronous state to PS occurs. For larger couplin
a new regime which we call lag synchronization (LS)
observed. LS appears as a coincidence ofshifted in time
states of two systems,x1st 1 t0d  x2std. Finally, with
a further increase of coupling, the time shift decreases a
this regime tends to CS. We show that these transitio
are related to the changes in the spectrum of Lyapun
exponents (LE).

Synchronization is a universal nonlinear phenomeno
and its main features are typically independent of partic
lar properties of a model. As a first example, we stud
two coupled Rössler systems [16],

Ùx1,2  2v1,2y1,2 2 z1,2 1 ´sx2,1 2 x1,2d ,

Ùy1,2  v1,2x1,2 1 ay1,2 , (1)

Ùz1,2  f 1 z1,2sx1,2 2 cd ,
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wherea  0.165, f  0.2, andc  10. The parameters
v1,2  v0 6 D and´ determine the mismatch of natur
frequencies and the coupling, respectively. These eq
tions serve as a good model for real systems havin
strange attractor that appears via period-doubling casc
e.g., for electronic circuits [2,3] or chemical systems [1

To describe the phase and the lag synchronizat
we need to introduce corresponding quantities. For
Rössler attractor the phase and the amplitude can
conveniently introduced as [13,15,17]

f  arctan
y
x

, A  sx2 1 y2d1y2 . (2)

The phase can be easily calculated for each subsys
thus allowing one to determine mean frequenciesV1,2 
k Ùf1,2l and relations of locking between them. To chara
terize LS, we introduce a similarity functionS as a time
averaged difference between the variablesx1 andx2 (with
mean values being subtracted) taken with the time shit

[18],

S2std 
kfx2st 1 td 2 x1stdg2l

fkx2
1 stdl kx2

2stdlg1y2
, (3)

and search for its minimums  mint Sstd. If the signals
x1 andx2 are independent, the difference between them
of the same order as the signals themselves; respecti
Sstd , 1 for all t. If x1std  x2std, as in the case of CS
Sstd reaches its minimums  0 for t  0. Below, we
demonstrate a nontrivial case, when the similarity funct
Sstd has a minimum for nonzero time shiftt, meaning a
time lag exists between the two processes.

First, we describe the transition to PS in the syst
(1) (see also [12]). The parametersv0  0.97 andD 
0.02 are chosen by trial in such a way that appeara
of large windows of periodic behavior is avoided. Th
calculation of the average frequenciesV1,2 allows us to
follow the transition at́  ´p ø 0.036 to the frequency
entrainmentV1  V2  V (see Fig. 1). Because of hig
coherence of the Rössler attractor, the phase differenc
the synchronous regime is bounded and oscillates aro
some mean valuedf  kf1std 2 f2stdl fi 0.
© 1997 The American Physical Society 4193
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FIG. 1. The frequency differenceV1 2 V2, the minimum
of the similarity functions, and the four largest Lyapunov
exponentsl of two coupled Rössler oscillators vs the couplin
´. Three different regions are clearly seen on thes vs ´
plot correspondent to a nonsynchronous state, phase, and
synchronization, respectively. The transitions between the
regimes are reflected in the spectrum of Lyapunov exponen
At the first transition, one of the zero LE becomes negativ
while the second transition corresponds to the zero crossing
one of the positive LE. The dashed line shows the depende
of Ss0d on the coupling; from this plot one can see tha
comparison of states of interacting systems without time sh
does not reveal the transition to LS. Two “outbursts” on th
s vs ´ plot at ´ ø 0.06 and´ ø 0.145 correspond to period3
windows.

For stronger couplinǵ  ´l ø 0.14 we observe a
new transition to lag synchronization (see thes vs ´

curve in Fig. 1). In Fig. 2 we show numerically obtaine
similarity functions in system (1) for relatively weak
intermediate, and strong coupling. For weak couplin

FIG. 2. Similarity functionSstd for different values of cou-
pling strength´ (1: ´  0.01, 2: ´  0.015, 3: ´  0.05, 4:
´  0.075, 5: ´  0.15, 6: ´  0.2). With the increase of
coupling, a minimum appears, indicating the existence of a c
tain phase shift between interacting systems (curves 3 and
In the regime of lag synchronization (curves 5 and 6), the mi
mum is extremely small.
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´ , ´p (curves 1 and 2),S , 1 and practically does
not depend ont, as can be expected for independe
signals. For intermediate coupling strength´p , ´ , ´l ,
a minimum of Sstd appears (curves 3 and 4) indicatin
the existence of some characteristic time shiftt0 between
x1 and x2. This shift is related to the phase differenc
ast0  dfyV. Note that in this regime the amplitude
are uncorrelated, so the value ofSst0d is relatively
large. Further increase of coupling makes, at´ ø ´l ,
this minimum very sharp (curves 5 and 6) and practica
equal to zero. It means that the states of the syste
become identical, but shifted in time with respect t
each other. The regime of LS is clearly demonstrat
in Fig. 3 by plottingx1st 1 t0d vs x2std. It is important
that calculations ofSs0d, i.e., the comparison ofx1 andx2
without time shift, reveal no transition at́  ´l. For
larger couplings´ . ´l , the time lagt0 continuously
decreases, but no qualitative transitions are observed.

The transitions between different types of synchroniz
tion can be related to the changes in the Lyapunov sp
trum (see Fig. 1). For small couplinǵ, ´p, there are
two positive LE (corresponding to chaotic amplitudes
and two nearly zero LE (corresponding to independen
rotating phases). At the phase locking transition at´ ø
´p, one of the zero LEs becomes negative, correspon
ing to a definite stable relation between phases (one z
LE, corresponding to a simultaneous phase shift of bo
Rössler oscillators, remains for all couplings, as it shou
in an autonomous system) [12]. The second transition

FIG. 3. Projections of the attractor of the coupled system
the planesssx1std, x2stdddd and delayed-coordinate plotsx2st 1 t0d
vs x1std for different values of coupling. (a),(b)́  0.05, a
regime with phase synchronization, (c),(d)´  0.2, a regime
with lag synchronization. The qualitative difference betwee
PS and LS is clearly seen from (b),(d), where time shifts,t0 
0.87 and t0  0.21, respectively, correspond to the minima o
the similarity functionSstd. The panel (d) demonstrates tha
the state of one of the oscillators is delayed in time with respe
to the other; the same can be shown for the variablesy1,2 and
z1,2 as well.
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LS corresponds to the change of the sign by the sec
positive LE, but does not exactly coincide with it due
the intermittency discussed below. This means that
relation appears not only between the phases but also
tween the amplitudes. The phase shift remains, and th
fore a time lag between the signalsx1 andx2 is observed.

To develop an approximate theory of the phase and
synchronization in the model (1), let us rewrite it in t
variables (2):

ÙA1,2  aA1,2 sin2 f1,2 2 z1,2 cosf1,2

1 ´sA2,1 cosf2,1 cosf1,2 2 A1,2 cos2 f1,2d ,

Ùf1,2  v1,2 1 a sinf1,2 cosf1,2 1 z1,2yA1,2 sinf1,2 (4)

2 ´sA2,1yA1,2 cosf2,1 sinf1,2 2 cosf1,2 sinf1,2d ,

Ùz1,2  f 2 cz1,2 1 A1,2z1,2 cosf1,2 .

The main idea in analyzing this system is to use averag
over rotations of the phasesf1,2, assuming that the am
plitudes vary slowly. Although there is no small param
ter allowing one to perform this procedure mathematica
correct, we will see that the results correspond rather w
to the properties of the full system. Introducing the “slo
phasesu1,2 according tof1,2  v0t 1 u1,2, and averag-
ing the equations for them, we get

d
dt

su1 2 u2d  2D 2
´

2

µ
A2

A1
1

A1

A2

∂
sinsu1 2 u2d .

(5)

When we neglect the fluctuations of the amplitudes on
right-hand side, this equation has a stable fixed point

u1 2 u2  arcsin
4DA1A2

´sA2
2 1 A2

1d
(6)

which corresponds to the phase locking of the Rös
systems. The transition point to phase synchroniza
can thus be estimated as´p ø 4DkA1A2ysA2

2 1 A2
1dl. If

we neglect the variations of the amplitudes we obt
´p ø 2D  0.04 (for the parameters used), in roug
agreement with the numerical result´p ø 0.036.

Now we turn to the description of the next transitio
and for this purpose we assume constant slow ph
in the equations forA and z. Here we also perform
the averaging, except for the terms containing both
fast phasesf1,2 and the variablesz1,2, because the latte
contrary to the amplitudes, cannot be considered as s
As a result we obtain

ÙA1,2 
a
2

A1,2 2 z1,2 cossv0t 1 u1,2d

1
´

2
fA2,1 cossu1 2 u2d 2 A1,2g , (7)

Ùz1,2  f 2 cz1,2 1 A1,2z1,2 cossv0t 1 u1,2d .

This is a system of two coupled periodically drive
oscillators. It is important that the driving in bot
systems is not identical, but comes with the phase s
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(6). If we neglect for a moment this phase shift, th
system (7) becomes a system of coupledidentical chaotic
oscillators, with a transition tocompletesynchronization
to be observed [6,7]. In the system (7) this happe
for ´  0.095, to be compared with́ l  0.14 in the
full system. With the phase shift, the transition to la
synchronization occurs. Indeed, if we introduce the l
variables for the second system̃A2  A2st 1 t0d, z̃2 
z2st 1 t0d, where t0  su1 2 u2dv21

0 , we can reduce
(7) to the system of two identical oscillators, driven wi
the same force but where the coupling term contains
amplitude that is time shifted. Because the amplitud
in this model are slow, this time shift does not influen
the full synchronization significantly, so we getA1 ø
Ã2, z1 ø z̃2. In the initial variables this means the ons
of lag synchronization:

x2st 1 t0d ø x1std , y2st 1 t0d ø y1std ,

z2st 1 t0d ø z1std .

This consideration also explains the discrepancy
tween the transition point to lag synchronization at´ 
´l ø 0.14 and the point where the second Lyapunov e
ponent becomes negatives´ ø 0.11d. Indeed, it is known
that the transition to complete synchronization is extrem
sensitive to small perturbations. Even when the sec
LE is negative, the local instability can lead to bursts
nonsynchronous behavior [19], see Fig. 4. Because
this intermittency,s gradually decreases in the regio
0.11 , ´ , 0.14 until these local instabilities disappear

We now discuss the relation between the lag synch
nization and the generalized one. The relationx1std ø
x2st 1 t0d can be rewritten asx1std ø Ttx2std, where
T t is the generating operator of the flow of the dynamic
system. If the couplinǵ and the time lagt are small,
we can approximateT with the generating operator of
partial (uncoupled) Rössler flow; it can be considered a
function in the three-dimensional phase space. Thus,
lag synchronization is similar to GS with the function b
ing defined by the dynamics of the partial system.

To check the universal character of the LS, we inve
tigate numerically two dynamical models of real physic
systems. One is the electronic circuit experimentally st
ied in [3] in the context of CS; the other is the hybrid las
system experimentally studied in [20]. Both systems

FIG. 4. The time seriesx2st 1 td 2 x1std in the intermittent
region ´  0.13, t  0.32. The bursts can be viewed as th
excursions from the low-dimensional “synchronous” attracto
4195
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described with low-dimensional models and allow one
implement coupling in a straightforward way. We hav
observed regimes of chaotic lag synchronization in bo
cases [21], with the similarity function having a rathe
sharp minimum. E.g., in coupled circuits [3] the similarit
functionSstd attains its minimums  0.01 for t  0.21
[to be compared withSs0d  0.07]. For the coupled laser
system the LS is even more pronounced:s  0.005 for
t  0.3, while Ss0d  0.19.

In summary, we have studied the synchronizatio
properties of two mutually coupled self-sustained chao
oscillators and have found a new synchronous sta
which we refer to as the lag synchronization. We ha
shown that with the increase of the coupling strength t
system can undergo several transitions. First, phase s
chronization appears; by this transition, one of the ze
LE becomes negative. Further increase of coupling lea
to the occurrence of the relationship between the chao
amplitudes. As a result, the states of two interactin
systems coincide (if shifted in time); in the Lyapuno
spectrum this transition corresponds to the zero cross
by one of the positive LEs. The motion in the origi
nally six-dimensional phase space is now confined to
nearly three-dimensional manifold, thus corresponding
characterization of a synchronous regime via attractor
mensions [22]. Further increase of coupling decreas
the time shiftt0, and the systems tend to be complete
synchronized. We emphasize that, in the LS state, f
coherence ofnonidenticalsystems is achieved due to in
teraction. This may be important, e.g., for coherent su
mation of radiation in laser arrays. As real systems c
be hardly found fully identical, the LS can be more fre
quently encountered in experiments with coupled syste
than CS. Finally, with the help of LS we can con
sider synchronization of periodic and chaotic oscillato
within a common theoretical framework. Indeed, due
phase shift in the synchronous state, mutual entrainm
of periodic oscillators having different frequencies ca
be viewed as a particular case of lag synchronizatio
but not of the complete one.
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