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Abstract. We report the results of time series analysis of human body sway while
quiet upright stance. The bivariate records (stabilograms) are measured by means of
a force plate. To investigate interrelations between oscillations in anterior—posterior
and lateral directions we use several techniques: cross-spectrum analysis, general-
ized mutual information, and calculation of instantaneous relative phase. We find
that the stabilograms can be qualitatively rated into two groups: noisy and oscilla-
tory patterns. Further, we show that oscillatory patterns may demonstrate phase
locking. We argue that these patterns are due to stochastic and chaotic dynamics,
respectively. We discuss the plausible strategy of postural control and present the
model that qualitatively describes transitions from noisy to oscillatory patterns and
phase synchronization. The relevance of the results of the time series analysis for
the diagnostics of neurological pathologies is discussed.

1 Introduction

An important problem in modern neurology is the development of methods
for differential diagnostics of various pathologies of the central nervous system
(CNS), both of organic and of psychogenic origin. A manifestation of these
pathologies are disturbances of posture and locomotion control. On the one
hand, quantitative studies of motor control, and equilibrium maintenance in
particular, may provide useful diagnostic information on the functional state
of the CNS (Gurfinkel et al. 1965; Terekhov 1976; Cernacek 1980; Furman
1994; Lipp and Longridge 1994). On the other hand, investigations of the
strategy of the posture control in humans is very interesting from a dynamical
standpoint as an example of control in the multi-degree-of-freedom system.
The force plate technique, also known as stabilography or posturogra-
phy, has been extensively used since decades (Baron 1983) for the analysis
of upright postural control and the evaluation of functional states of the hu-
man organism. During the tests small sways of the human body in anterior—
posterior and lateral directions are measured simultaneously. These records,
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called stabilograms, are usually analyzed by means of different statistical
techniques, spectral and correlation analysis (Terekhov 1976; Rosenblum and
Firsov 1992b; Collins and DeLuca 1994).

In the present paper we describe the results of our force plate investiga-
tions of healthy subjects and patients with different neurological pathologies.
In our study we concentrate on the joint analysis of both components of the
stabilograms. For this purpose we use the standard cross-spectrum analysis
technique, the generalized mutual information (Pompe 1993), and the re-
cently found effect of phase synchronization of coupled self-sustained chaotic
oscillators (Rosenblum et al. 1996; Pikovsky et al. 1996). After the discussion
of the plausible strategy of the neural regulation of posture we introduce a
model of two—dimensional dynamics of the center of gravity of the body.

2 Experiments

The experiments were accomplished in the Clinic for Nervous Diseases of the
Moscow Medical Academy using a standard rigid force plate with four ten-
soelectric transducers. The output of the setup provides current coordinates
(z,y) of the center of pressure under the feet of the standing subject. These
coordinates are close to that of the center of gravity of the human body. In
the following we denote the deviation of the center of pressure in anterior—
posterior and lateral direction as x and y, respectively. Every subject was
asked to perform three tests of quiet standing with:

EO — eyes opened and stationary visual surrounding,
EC — eyes closed,
AF — eyes opened and additional video—feedback.

In the AF test the current position of the center of pressure was indicated by a
light dot on the screen of an oscilloscope. The subject was instructed to watch
the screen and to keep the dot within a circle in its center. The AF test can be
considered as a simply realized non-invasive method to change the dynamics
of the system in order to extract additional information about it. In all tests
the plate was fixed, i.e. no artificial mechanical perturbations of the upright
posture were used.

The postural sways have been sampled with a frequency of 25 Hz. Every
record contains two channels — each of 4096 points (~ 160s). About 150
stabilograms have been obtained testing healthy volunteers and neurological
patients. By visual inspection we have rejected some trials, for instance that
where the subject moved during the test, or where he or she was not able to
stay for three minutes. The later turned out to be rather difficult for patients
with a neurological pathology. Thus we got 132 bivariate records which can
be considered as free of artifacts. A survey of the data is given in Tablel.
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Table 1. The subjects under study
# subject sex age state group tests

1-3 39 f 23 healthy 1 EO, EC, AF
4-6 32 f 23 healthy 1 EO, EC, AF
7-9 33 f 25 healthy 1 EO, EC, AF
10-12 35 f 26 healthy 1 EO, EC, AF
13-15 40 £ 27 healthy 1 EO, EC, AF
1618 2 f 31 healthy 1 EO, EC, AF
19-21 34 f 32 healthy 1 EO, EC, AF
22-24 42 f 36 healthy 1 EO, EC, AF
25-27 3 f 37 healthy 1 EO, EC, AF
28-30 4 f 40 healthy 1 EO, EC, AF
31-33 43 m 22 healthy 1 EO, EC, AF
34-36 36 m 25 healthy 1 EO, EC, AF
37-39 383 m 21 healthy 1 EO, EC, AF
40-42 41 m 22 healthy 1 EO, EC, AF
4345 5 m 27 healthy 1 EO, EC, AF
4648 37 m 27 healthy 1 EO, EC, AF
49-51 1 m 29 healthy 1 EO, EC, AF
52-54 7 f 26 multiple sclerosis 2 EO, EC, AF
55-57 6 f 30 multiple sclerosis 2 EO, EC, AF
58 -60 30 f 30 multiple sclerosis 2 EO, EC, AF
61-63 9 f 42 Parkinson disease 2 EO, EC, AF
64—-66 10 m 53 Parkinson disease 2 EO, EC, AF

67—-68 11 m 53 Parkinson disease 2 EO, EC
69-71 8 f 62 brain tumor 2 EO, EC, AF
72-74 4 m 44 atrophy of cerebellum 2 EO, EC, AF
75-T7 45 m b4 atrophy of cerebellum 2 EO, EC, AF
78-80 46 f 56 discircular encephalopathy 2 EO, EC, AF

81-82 47 m 58  discircular encephalopathy 2 EO, EC
83-85 12 f 36 neurathenia 3 EO, EC, AF
86 —88 28 f 42 neurathenia 3 EO, EC, AF
89-91 15 f 44 neurathenia 3 EO, EC, AF
92-94 27 m 52 hysterical hemiparesis 3 EO, EC, AF

95-96 14 f 15 hysterical hemiparesis 3 EO, EC
97-99 22 f 20 neurotic disorder 3 EO, EC, AF
100-102 25 f 28 neurotic disorder 3 EO, EC, AF
103-105 18 f 35 neurotic disorder 3 EO, EC, AF
106 —108 26 f 40 neurotic disorder 3 EO, EC, AF
109-111 23 f 41 neurotic disorder 3 EO, EC, AF
112-114 21 f 51 neurotic disorder 3 EO, EC, AF
115-117 19 f 51 neurotic disorder 3 EO, EC, AF
118-120 24 f 62 neurotic disorder 3 EO, EC, AF
121-123 20 f 34 functional ataxia 3 EO, EC, AF
124-126 13 £ 39 functional ataxia 3 EO, EC, AF
127-129 17 f 40 functional ataxia 3 EO, EC, AF
130 —-132 16 f 51 functional ataxia 3 EO, EC, AF
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The subjects can be divided first of all into three groups:

Group 1: healthy persons,

Group 2: subjects with an organic pathology (tumor, multiple sclerosis,
Parkinson disease),

Group 3: subjects with a psychogenic pathology (neurathenia, functional
ataxia).

3 Data Analysis

For the analysis of the stabilograms different methods have already been used,
including the calculation of various statistical characteristics — the maximal
and root mean square displacement in both directions, the length of the
trajectory on the plain, the area inside the contour formed by the trajectory,
the calculation and approximation of one and two-dimensional distributions,
correlation and spectral analysis, calculation of correlation dimension, and
random-walk analysis (Terekhov 1976; Dobrynin et al. 1985; Rosenblum et
al. 1989; Rosenblum and Firsov 1992b; Firsov et al. 1993; Collins and DeLuca
1994; Yong 1994).

In the present work we concentrate on the joint analysis of two compo-
nents of stabilograms. The main question we are trying to answer is: Are the
oscillations in anterior—posterior and lateral directions independent or not?
To our knowledge, this question has not been systematically addressed in
the literature. Our previous study (Rosenblum et al. 1989) showed that the
x and y components are linearly uncorrelated if the subject is healthy, and
some correlation may appear in pathological case. To clarify this point we
use the cross-spectrum analysis and the cross generalized mutual information
(GMI). Moreover, we look for synchronization phenomena.

Introducing the Data. Stabilograms appear as some random functions of
time (Fig. 1). By visual inspection we can conclude that stabilograms are,
as a rule, non—stationary. Further, we can distinguish between noisy and
oscillatory patterns, although these notation is to some extend arbitrary.
Oscillatory patterns appear considerably less frequently — only some few per
cent of the records can be identified as oscillatory. We can also conclude that
in our data set the oscillatory patterns appear in pathological cases only.
The probability distributions of three records (#1: healthy female, 23 years
old, EO; #61: Parkinson disease, 42 years old, EO; and #89: neurathenia,
female, 44 years old, EO) are shown in Fig. 2. The histograms of healthy
subjects are usually close to Gaussian. Oscillatory patterns, and patterns
close to them have the bimodal form of the distribution. We note that in the
last record the distribution of x is clearly asymmetrical. Our studies show
that this asymmetry is a good indicator of a functional pathology.
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Fig. 1. Typical stabilograms of healthy subjects (records #1,6,16, from top to
bottom), and patients with organic (records #55,61,78) and psychogenic (records
#95,99,123) diseases. In each signal the time runs from 0 to 164s

To make the data suitable for our analysis we have removed low-frequency
trends. For the cross-spectrum and mutual information analysis it is done by
fitting and subtracting a polynomial of order 10. The resulting stationarity of
the data was tested with a method proposed elsewhere (Pompe, this volume).
The trendless data are shown in the lower panel of Fig. 1. For the calculation
of the instantaneous phase the moving average has been subtracted from the
data (see below).
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Fig. 2. Probability distributions of stabilograms of a healthy subject, record #1
(a), Parkinsonian patient, #61 (b) and patient with functional ataxia, #89 (c).
The upper and low panels show the distributions for z and y

Linear Analysis. A standard technique to analyze the linear relationships
between two signals leads to the cross-spectrum Sy, (f) of the processes x and
y. It is defined as the Fourier transform of their cross-correlation function. For
the quantification of linear correlations in the frequency domain the coherence
function v2(f) is used:

|Say (NI
Sz (£)Sy(f)

where S, and Sy are the auto—spectra of x and y, respectively. The coherence
function varies from 0 to 1. The lower bound corresponds to the case where
the frequency components of both signals are linearly independent whereas
in all other cases linear relationships are indicated. Another important char-
acteristic is the phase spectrum

1p(f) = arg Szy(f) - (2)

7 (f) = (1)

It represents the phase shift between frequency components, provided they
are coherent. Otherwise it has no meaning. In our calculations we use the fol-
lowing parameters: the original record is divided in 12 overlapping samples of
1024 points each and the result is obtained by averaging over 12 periodograms
using the Bartlett window.

The power spectra of noisy stabilograms decay monotonically, and the co-
herence functions 72 are considerably less than unity for the whole frequency
range (Fig.3). This indicates the absence of linear correlations between x
and y. Although some broad peaks appear in the spectra of the y compo-
nents in Fig. 3, no significant coherence is seen. In some cases coherence can
be observed in the frequency range of the so-called §-rhythm of correspond-
ing electroencephalograms (4-6 Hz). This may indicate certain intellectual
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Fig. 3. Typical cross-spectrum of the stabilogram of a healthy subject (record #4)
(a) and cross-spectra of Parkinsonian patient (record #61) (b) and the subject
suffering from neurathenia (record #89) (c). From bottom to top are shown: the
auto-spectra of z and y, and the coherence function ? of the the cross-spectrum.
(b): There is some significant increase of the spectral density around 6Hz, but the x
and y oscillations are not coherent. Nevertheless, significant dependencies between
components of the stabilogram can be revealed by nonlinear techniques (see below)

or emotional stress (Fig. 9c). The results of the linear analysis are summa-
rized in Fig. 4, where the coherence functions are shown for all 132 records
as a gray scale picture. The white and full black level corresponds to 2 =0
and v2 = 1, respectively. We can conclude that with the exception of some
pathological records the components of stabilograms are noncoherent.

Analyzing Nonlinear Dependencies in the Data. In order to reveal
the presence or absence of dependencies between the postural control signals
y(t) and z(t + 7) we consider the cross mutual information I.(7) of them.
It represents the mean (over all instants ¢) information we get from y(¢) on
z(t + 7) and vice versa. The parameter ¢ > 0 denotes the relative level of
coarse graining, ¢ < 1. For smaller values of £ more details of the relation
between the signals can be detected, however, the reliability of the estimates
is decreased in this way. Here we have chosen £ = 0.05 which means that
we consider each signal with a precision of 5% of its total variation range.
The time lag 7 is taken as the independent variable leading to the mutual
information function. It can be considered as a nonlinear analogon to the
squared correlation function. In our applications 7 runs in an interval around
zero (=10 s < 7 < 10 8). For 7 — %00 the mutual information typically
vanishes reflecting the absence of long term relations of the posture control
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Fig. 4. Coherence functions y*(f) of of 132 bivariate postural control records
[z(t),y(t)] of healthy and ill subjects

data.

We present results for the so-called generalized mutual information (GMI).
It causes some computational efforts in comparison to the usual Shannonian
mutual information. For each 7 the GMI fulfills the relations

0<I.(r) < —logy e ~ 4.32bit .

Their interpretation is as follows: The quantities y(¢) and z(t + 7) can be
considered as independent within all accuracy levels > ¢ if and only if I.(7) =
0. On the other hand, z(¢ + 7) follows uniquely from y(¢), within the relative
accuracy &, if and only if I.(7) attains its upper bound — log, €. The larger
I.(7) the stronger are the linear and nonlinear statistical relations between
y(t) and z(t + 7). Here we work with trendless data — stationarity is crucial
for the GMI estimations. A more detailed description of the method is given
elsewhere (Pompe, this volume).

We have calculated the GMI function for each of the 132 bivariate records
(z,y) of Table 1. In Fig. 5a the functions are encoded by a gray scale and
plotted vertically — horizontally the number of the record runs. The GMI
functions vary between 0 and 1bit corresponding to a range of 0...23% of
the maximum possible information of about 4.32bit. In most cases I.(7) lies
in the range 0.25 £ 0.2bit indicating that the dependencies are rather week.
This is true for healthy as well as for ill subjects. However, in the later case
we sometimes observe relatively strong dependencies over a wide range of
time lags 7, for instance for the records #61-63 corresponding to a person
suffering from the Parkinson disease. (The bivariate record #61 is shown in
Fig. 1.) It is important to underline that the cross-spectral analysis shows
no coherence for this record (see Fig. 3b) whereas the analysis of the relative
phase also shows strong interrelations between z and y.
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Fig. 5. In (a) the cross mutual information functions I.(7) of 132 bivariate pos-
tural control records [z(t), y(t)] of healthy and ill subjects are represented. Strong
dependencies between y(t) and z(t + 7) correspond to the more dark regions. The
diagrams (b)—(e) represent features extracted from the mutual information func-
tions:

(b) mean of I.(7) for —0.5s < 7 < 0.5s,

(c) decay of I.(7) for 7 =0 — 0.5s and 7 = 0 — —0.5s,

(d) the same as in (c) but only records where the subject had eyes opened,

(e) the same as in (d) but indicating only the sign
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From the representation in Fig. ba we cannot well discriminate between
healthy and ill subjects. Nevertheless, the situation improves if we investigate
the GMI functions for small values of the time lag, say —1s S7 < 1s. In
this region we can derive from the functions several features which have some
discriminating power. Figures 5b—e give several examples.

In Fig. 5b the mean of the mutual information for small time lags is
represented. It is defined as

AT
e L (3)

For about 15% of the records of the ill subjects this mean is larger than
the corresponding largest value of the healthy subject which are the outliers
(records # 40, # 50, and #51). From the figure we can conclude that the
xz—y-coupling is more likely to be stronger for ill subjects. If the mean mutual
information exceeds the threshold of 0.5bit ~ 0.11 x log, ¢™* then it is very
likely that the person is ill. We get nearly the same figure by deriving the
mean according to (3) for any Ar =0.2-2 s. Moreover, it should be noted
that this analysis is done with ranked data (Pompe, this volume). All this
makes the discrimination rather robust.

In Fig. 5¢ the mean decay of I, (7) for small time lags is plotted. We define
it as
2x I.(0) — I.(—Ar) — I.(AT)

. . )
-

From the figure we conclude that for subjects suffering from a psychogenic
disease it is rather likely that this quantity is positive indicating that there
is a decrease of the z—y-coupling for growing absolute time lags. If there is
no such coupling at 7 & 0 then the decay of I.(7) is mainly determined by
random fluctuations of the estimator of I (7). This leads first of all to the
somewhat random fluctuations of the corresponding feature of the healthy
subjects.

In Fig. 5d the same as in Fig. 5c¢ is shown, but now only the results for
the EO test are plotted. For ill persons we often get positive values whereas
for healthy subjects negative values seem to be somewhat more likely. For
subject with a psychogenic disease this is most striking as it becomes obvious
from the plot of the sign in Fig. 5e.

The same investigations were done for the squared cross correlation in-
stead of the GMI functions. The results are presented in Fig. 6. A comparison
with Fig. 5 shows that we could expect better distinctive marks from the non-
linear analysis of the data in Fig. 5.

We have done some more attempts to find distinctive marks from the GMI
functions. For instance, we also considered higher order cross GMI functions
I, 9(7) describing relations between [y(t — ¥),y(t)] and z(t + 7), ¥ > 0. In
general, the additional knowledge of y(t —4) cannot decrease the information
on z(t+7). Indeed, in our numerical experiments we always found an increase

feature; =
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Fig. 6. Tn (a) the squared cross correlation functions ¢*(7) of 132 bivariate pos-
tural control records [z(t), y(t)] of healthy and ill subjects are represented. Strong
correlations between y(t) and z(t +7) correspond to the more dark regions. The di-
agrams (b)—(e) represent features extracted from the squared correlation functions:
b: mean of ¢*(7) for —0.5s < 7 < 0.5s,

c: decay of ¢*() for 7 =0 — 0.5s and 7 = 0 — —0.5s,

d: the same as in (c) but only records where the subject had eyes opened,

e: the same as in (d) but only indicating only the sign



294 Michael Rosenblum et al.

of this information which was somewhat larger for ill subjects. Thus we are
inclined to define another feature

AT

1
feature, = AT 7AT[IE779(T) — I.(1)]dr . (5)

Figure 7 represents a plot of features against feature;. Almost all feature
vectors of healthy subjects are found within the circle whereas that of about
80% of the ill subjects are outside. The discrimination is a bit more striking
for subjects suffering from a psychogenic disease.

In our calculations we have chosen Ar ~ 0.5s and ¥ = 40ms. However,

any A1 = 0.2-2 s and ¥ = 40-250 ms would provide a rather similar discrim-
ination of 70...80%.

q o: healthy subjects
| o © o: ill subjects (organic)
0.2 < p <: ill subjects (psychogenic)
- .qq <
] <«f <
R G0
features 1 B N
in bit . Te0 % g
0.1 TR
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Fig. 7. Plot of two characteristic features of the cross generalized mutual informa-
tion functions of the postural control data recorded with opened eyes. The feature;
is defined in (4). It describes the decay of the z—y-coupling for increasing time
lag. The features is defined in (5). It describes the increase of the coupling by an
additional coordinate

Our investigations suggest that we could derive some characteristic pa-
rameters describing the nonlinear relationship between the postural control
data and having some discriminating power between healthy and ill subjects.
This might be important for medical diagnosis. However, more data records
are needed to get more reliable statements.

Search of Phase Synchronization. To analyze oscillatory patterns we cal-
culate instantaneous phases ¢1 and ¢ of the signals z and y using the Hilbert
transform. An introduction of this technique is given elsewhere (Rosenblum
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and Kurths, this volume). If the relative phase A¢ = ¢1 — ¢= is limited, the
presence of phase synchronization of interacting chaotic oscillators may be
indicated (Rosenblum et al. 1996; Pikovsky et al. 1996). Possible models of
the underlying dynamics are discussed below. We underline that the method
is suitable for processing non-stationary data, and it can reveal alternating
epochs of qualitatively different behavior. Applications of this method to the
analysis of the cardiorespiratory system of a piglet are presented elsewhere
(Hoyer et al., this volume).

In order to eliminate low-frequency trends, the moving average computed
over the n-point window was subtracted from the original data. The window
length n has been chosen by trial to be equal or slightly larger than the char-
acteristic oscillation period. Its variation up to two times does not practically
effect the results.

Here we present in detail results of the analysis of several records. For
the first example stabilograms of a female subject were investigated (records
#124-126: 39 years old, functional ataxia). We can see that in the EO and
EC test the patterns are clearly oscillatory (Fig. 8). The difference between
these two records is that with eyes opened the oscillations in two directions
are not synchronous during approximately the first 110s, and are phase
locked during the last 50s. In the ECtest, the phases of oscillations are
perfectly entrained during all the time. In both cases the phase difference
fluctuates around zero (the mean value (A¢) =~ 0.003). From the power
cross-spectra (Fig. 9) we see that, although the low-frequency peaks are
clearly seen, the coherence is not very high (v? ~ 0.5 for the EO test and
v? = 0.7 for the EC test), as well as the maximal value of the GMI function
(I.(1) < 0.2 x logye~! for the EOtest and I. (1) < 0.23 x log, e~! for the
EC test). The behavior is essentially different in the AF test. The patterns
become more noisy and no phase locking or increased coherence in the low-
frequency domain is observed. Instead of it, the coherence is increased in a
rather broad frequency range (& 3-5 Hz) which is close to the frequency of
the §-rhythm in EEG. Such qualitative changes of dynamics (from oscilla-
tory to noisy) was several times observed for psychogenic patients. Further
investigations are required in order to find out whether this test can be used
as a diagnostic tool.

For the second example we have chosen the stabilogram of a Parkinsonian
patient (records #61-63: female, 42 years old). During the EO test both 1:1
and 1:2 synchronous epochs can be found (Fig. 10), although the second
one is rather short (about 10 seconds). It is important to notice that in the
1:1 regime the phase difference is significantly non-zero ((A¢) ~ 0.4 in the
interval 70-100s and (A¢) ~ —0.7 in the interval 100-130s). During the
EC test only an 1:2 phase locking epoch of about 50s was observed (Fig. 11).
No synchronization was found for the AF test.

We underline that the fact that both components of the stabilogram can
be rated as oscillatory patterns does not mean the occurrence of the synchro-
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Fig. 8. Stabilograms of an ataxia patient (records #124-126) after trend elimina-
tion for EO (a), EC (b), and AF (c) tests. The upper panels show the relative phase
between two signals z and y. During the last 50s of the first test and the whole
second test the phases are perfectly locked. No phase entrainment is observed in
the AF test
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Fig. 9. Auto-spectra and coherence functions for the stabilograms shown in Fig. 8.
Although the time series in the EC tests are perfectly phase locked, the spectral
analysis shows no significant coherence
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Fig. 10. Stabilogram of a Parkinsonian patient (record #61) after trend elimination
for the EO test. The upper panels show the relative phase between two signals x
and y. Enlarged parts of (a) show epochs of 1:1 (b) and 1:2 (c) locking

nization. Thus, the patient with the tumor has shown oscillatory patterns in
all three tests but no synchronization was found.

4 Model of Postural Control Dynamics

Several mathematical models of posture dynamics have been proposed in the
literature. All of them consider only one-dimensional sways of the center of
gravity of the human body. The muscle-skeleton subsystem is represented as
one-link (Aggashjan and Palcev 1975; Matsushira et al. 1983; Rosenblum et
al. 1989) or multi-link inverted pendulum (Rosenblum and Firsov 1992a), or
considered as a pinned polymer (Chow and Collins 1995). The crucial point is
modelling the control subsystem, i.e. the regulating functions of the CNS. The
structure of this system and strategy of the control are highly complicated.
Nevertheless, several main principles can be outlined:

— The CNS realizes simultaneously feedforward and feedback control. This
provides high reliability of the whole system. The controlled variables are,
respectively, stiffness of the joints and elastic torques. These variables are
governed by separate cortical systems and adjusted via coactivation and
reciprocal activation of muscles (Humprey and Reed 1983).

— The CNS constantly receives information on angles and angular velocities
of joints. This information is provided by proprioceptors, visual and vesti-
bular analyzers. The main role is played by proprioceptors. Experimental
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Fig. 11. Stabilogram of an Parkinsonian patient (record #62) after trend elimi-
nation for the EC test. The upper panels show the relative phase A¢p = ¢1 — ¢o
between the signals z and y (solid line) and ¢1 —2¢2 (dashed line). 1:2 phase locking
is seen in the time interval 40-90 s.

studies confirm that the nervous system constantly uses this information
for the maintenance of posture (Gurfinkel et al. 1982, Litvincev and Tur
1988).

— The characteristics of the proprioceptors (in the muscles and joint spin-
dles, tendon receptors) are essentially nonlinear. Namely, there exist some
sensibility thresholds which were directly measured in physiological exper-
iments (Gurfinkel et al. 1982). The existence of these thresholds was also
indirectly confirmed by results of time series analysis (Collins and De
Luca 1994).

— The important property of the feedback loops is time delay caused by the
finiteness of the velocity of propagation and processing of the information
in the nervous system. The value of the delay is estimated as 0.1-0.8 s
(Gurfinkel et al. 1965, Williams 1981).

4.1 Modelling One—Dimensional Sways

The first model of posture dynamics was proposed in (Aggashjan and Palcev
1975) in the form of an one-link inverted pendulum elastically linked to the
base

P+ 2hp+ o+ R=E(1) . (6)

&(t) is “white” Gaussian noise, and R denotes the regulating action of the
CNS. It was assumed that the control is based on position and velocity feed-
back loops with time delay, R = c1p(t — 7) + c2¢(t — 7). Thus, the origin of
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the body sway while quiet standing was supposed to be a result of fluctua-
tions in the control and mechanical subsystems. A similar model was studied
in (Matsushira et al. 1983). To account for the sensibility threshold of pro-
prioceptors, Matsushira et al. have also considered piecewise linearity in the
feedback loop. They found that this leads to the excitation of periodic oscil-
lations corrupted by noise.

The importance of the nonlinearity in the feedback loops was demonstra-
ted elsewhere (Rosenblum et al. 1989, Rosenblum and Firsov 1992a). The
following model was studied numerically (Fig. 12a):

G+2hp + o+ aF (ot —71),M) +F (Pt —1),2) =0, (7)

where the piecewise linear function F describes the characteristics of the
proprioceptors with sensitivity thresholds A; o,

F(z,20) = (. — 20)O(z — 20) + (z + 20)O( — (z + 20)) , (8)

O(-) is the Heaviside step function. For this model in a broad range of pa-
rameters chaotic oscillations arise. It was concluded that oscillations of the
center of gravity of the human body may be of deterministic origin.
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Fig. 12. Scheme of the one-link inverted pendulum model (a). The dashed line
denotes the feedback loop with time delay 7. The nonlinear properties of propri-
oceptors are modelled by a piecewise linear functions (b), (c) or smooth function

(¢).

Another model (Rosenblum and Firsov 1992a) was proposed on the base
of the so-called equilibrium point hypothesis (Feldman 1979; Hogan 1985).
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According to this hypothesis the muscle—skeleton subsystem is considered as
a mass—spring system where the lengths and elasticities of the springs are
adjusted by the controller (CNS). Hence, the CNS defines the equilibrium
configuration, or state, of the system (in the one-dimensional case we can
speak about the equilibrium point). In the process of movement the CNS
changes the equilibrium point and the mechanical system goes to this new
equilibrium state according to general mechanical laws and in spite of small
external perturbations. The control of movements in the presence of rapid
external perturbations is mainly achieved by an increase of the stiffness of
the joints. The constant posture is maintained by means of shifting the equi-
librium point while the stiffness can be considered constant (Humprey and
Reed 1983).

Let us denote the coordinate of the center of gravity by x and consider
small oscillations in the vicinity of the equilibrium point z,

F+2hi+wi(x—2)=0. (9)

The CNS regulates the posture moving the equilibrium point. This regula-
tion is based (a) on the information on z and its derivative that is obtained
with some time delay, and (b) information on the current equilibrium state
“known” to the controller. Hence, we can write

2= f(z,2z(t —m), 8t —7),...)
As the first approximation we take
z= —602’—61.7:(:[3@—7'),)\1) —62.7:(.’i‘(t—7'),)\2) ; (10)

where F is the characteristic of proprioceptors. If ¢ > h, (9) and (10) reduce
to (7) with the feedback coefficients ¢; 5 = w?é; 2. Simulations of the model
(9), (10) on the one hand and (7) on the other hand give qualitatively similar
results.

The models described above can be divided into two groups: the models
of Aggashjan and Palcev 1975, and Matsushira et al. 1983 imply that stabilo-
grams originate from some fluctuations, whereas the models of Rosenblum
et al. 1989, and Rosenblum and Firsov 1992a are purely deterministic. The
stabilograms are rather short and it is impossible to get considerably longer
records even with healthy subject (the tests are rather tiresome). That is
why we believe that the identification of the origin of the body sway (“noise
versus chaos”) on the basis of time series analysis is hardly possible. Nev-
ertheless, the approximately 1/f behavior of power spectra of some of the
noisy patterns can be considered as a hint (but certainly not as a proof)
that the body sways are caused by some fluctuations. Contrary to that, the
appearance of oscillatory patterns suggests self-oscillation excitation.! More

1 Although the periodic-like oscillations may appear as a result of filtration of
some noise, it seems to be rather unlikely that the control system acts like such
a narrow-band filter.
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strong evidence of deterministic dynamics, although certainly noisy, is the
occurrence of phase synchronization which is a characteristic feature of in-
teraction between self-sustained oscillators. Therefore, we assume that both
noise and chaos can be responsible for the observed phenomena. Hence, in
modelling we take into account both stochastic and deterministic origin of
oscillations under study. Namely, we consider the following model:

$+2hp +wio+aF (et —1),\) +aF (ot —1),X2) =£@1) , (1)

where the characteristics of proprioceptors are described by a piecewise lin-
ear or smooth nonlinear function F. £(t) is some noise which is taken to
be white and Gaussian. We have simulated (11) for three different functions
F (Fig. 12b—-d) and have not found essential dependencies of the results on
the choice of the function. In further examples we use the function plot-
ted in Fig. 12c. In the purely deterministic case (£(t) = 0) we found peri-
odic, chaotic, and decaying (transient) solutions depending on the parameter
values.2

An interesting feature of the system (11) is its response to noisy forcing,.
Besides “trivial” behavior (random oscillations in the vicinity of the sta-
ble equilibrium point that can be considered as a model of noisy patterns
Fig. 13a), we have observed the following: Small noise can induce the ap-
pearance of a structure in the phase space that is reminiscent to the strange
attractor which exists in the phase space of the dynamical system for close
parameter values. Alternatively, for the parameter values corresponding to
the existence of the limit cycle in the noise-free system, the noise not just cor-
rupts the cycle but makes it very similar to the strange attractor (Fig. 13b,
c). As a result, the parameter region corresponding to irregular periodic-like
oscillations (that are either noisy chaotic or noisy periodic) is rather broad.

To summarize, the proposed model describes qualitatively the appearance
of noisy and oscillatory patterns — forced random oscillations and chaotic self-
oscillations disturbed by noise, respectively. The sensitivity thresholds A;
and the coefficients ¢; » may serve as the physiologically relevant bifurcation
parameters.

4.2 Modelling Sways in Two Dimensions

From the fact that body sways of healthy persons in anterior—posterior and
lateral directions are independent, we can conclude that there exist two sep-
arate control systems governing maintainance of the upright posture. We
assume that both systems can be described by equations of the form (11).

% If the proprioceptor characteristics of Fig. 12b is used, infinitely growing unsta-
ble solutions may occur. As we restrict ourselves to modelling small oscillations
around the equilibrium, we do not consider these solutions. We do not perform
the detailed bifurcation analysis of the model because there are 6 free parameters,
and the physiological meaning of two of them, ¢1,2, is not clear.
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Fig. 13. Simulated time series x(t) (left column) and projections of the corre-
sponding attractors on the plane z, & (right column). (a) Simulated noisy pattern
(A1 = A2 =0.01, c1 =4, c2 =8, o¢ = 0.1). (b) Oscillatory pattern (A\; = 0.01,
A2 = 0.05, ¢1 =4, ca = 8, 0¢ = 0.1). In the absence of noise the attractor of the
system is the limit cycle. Influence of noise results in the structure similar to the
attractor of the noise—free system for close parameter values (cf. (c)). (c) Chaotic
solution (A1 = 0.01, A2 =0.05, ¢c1 =7, c2 =8, g¢ =0)

Of coarse, the parameters of these equations can differ. In the following we
suppose that the time delay 7 is the same for both systems because it is
determined by the length of the neural fibers and the velocity of the signal
propagation. These parameters are likely to be equal for both systems.

As the results of the data analysis show, there are several qualitatively
different situations:

1. The z and y are noisy-like. No synchronization was observed in such a
case.

2. Both z and y are oscillatory-like and may be either synchronous (with
different relation of frequencies) or not. Moreover, synchronous and non-
synchronous epochs may alternate within one test.

3. Intermediate situations are also possible — one component is noise-like
and another is oscillatory-like. No synchronization is found in this case.

The first and third case can be easily modelled by two equations of the form
(11) with two independent noise sources £ and 7. The appearance of the phase
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Fig. 14. Two possible oscillatory structures explaining the observed effect of phase
synchronization: two coupled self-oscillatory systems (a) and two self-oscillators
entrained by the common external driving. In both cases signals z and y may
demonstrate phase locking

locking can be explained in different ways:

— Due to some coupling between two chaotic oscillators they can synchro-
nize (Fig.14a). This situation can be described by the following model:

T+ 2h,t + wil' + Cx,lf(x(t - 7'); )\x,l) + Cz,Z-F(:.E(t - 7'), )‘%2) =
e:(y — @) +&(1)

§+ 2hyy + wiy + Cy’lf(y(t - 7), Ay, 1) + Cy’zf( (t—r71), )\y’g) =
£y (@ — ) +n(t) |
(12)
where ¢, , are the coupling coefficients. The coupling between two con-
trol systems may arise, e.g., due to some abnormal function of neural
processing making the information from two different channels mutually
redundant. The results of the simulation are presented in Fig. 15a.

— If the oscillations excited in two control systems are entrained by some
external oscillatory source their phases are also locked (Fig.14b). This
external source may appear due to some pathological excitation in the
brain, e.g., in the case of Parkinsonian disease. The appropriate model
can be written as

&+ 2he® + wir + o1 F(2(t = 7), Aa1) + oo F (8t = 7), As2) =
eg 8in 2t + £(t)

y+2hyy'+w§y+cy,1.7-'(y(t—r),)\y1) +Cyzf( (t—T),)\ ’2)
gysin 2t +n(t) .
(13)
The results of the simulation are presented in Fig. 15b.

— Both control systems are not self-excited and are driven by some external
oscillatory force. In this case the phases may be also locked. This expla-
nation seems to be rather unlikely, because in such a case the phases
must be always entrained. The transitions between non-synchronous and
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synchronous oscillatory patterns, or between different synchronous states
would be impossible.

5 2@ e=0 1 (b 0 -
_TG(:I _2 \\ \\\
e 67 £=0.2""4  © £=0.1"""5
-10 . I . I . I . I . I . I
0 50 100 150 0 50 100 150
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Fig. 15. (a): Mutual synchronization of two postural control systems (see 14a). In
the absence of coupling (¢, = £y = ¢ = 0) the phases diverge. Coupling ¢ = 0.2
leads to phase locking. (b): Synchronization of two control systems by a common
external source. The parameters are: A;;1 = Ay,;1 = 0.01, Az 2 = Ay2 = 0.05,
cz1=4,c2=8,¢cy1=6,¢cy2=8,0¢ =0, =0.1

We note that, as our goal was to demonstrate the phase synchronization
properties of our model, we restricted our simulations to the case of a sym-
metric coupling only. Certainly, an asymmetric coupling seems to be more
realistic. This was confirmed by calculation of higher order GMI functions
I. . Obviously, synchronization can be observed in this case as well.

From the information available we cannot decide which of the described
oscillatory structures is responsible for the phase locking observed in exper-
iments. Certainly, different cases might be encountered in different physio-
logical states. The understanding of physiological mechanisms leading to the
appearance of the phase locking is a challenge for further investigations.

5 Conclusions

We have studied postural control in humans while quiet standing with open
and closed eyes and with additional video—feedback. We have analyzed the
interrelations between components of stabilograms using linear and nonlin-
ear techniques. Our investigations demonstrate that in the healthy state the
regulation of posture in anterior—posterior and lateral directions x and y can
be considered as independent processes. This fact may be expected from the
point of view of the control theory because independence of two control loops
provides high reliability of a well operation of the whole system.

Further, we demonstrated that the occurrence of certain relationships be-
tween the x and y components of stabilograms can be revealed with the help
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of the generalized mutual information functions and relative phase calcula-
tions. We hope that further developments of these techniques might result in
the appearance of new diagnostic tools. The comparison of these methods of
bivariate data analysis is also interesting in itself.

We have proposed a model of body sways in anterior—posterior and lateral
direction. The model qualitatively describes the appearance of noisy and os-
cillatory patterns in stabilograms, and the arising of phase synchronization.
We proposed two plausible oscillatory structures that can explain the ob-
served effect of phase locking between = and y. A very interesting problem is
to find out which of these mechanisms (or, perhaps, both) are responsible for
the phase synchronization. Further experiments, in particular simultaneous
measurement of EEG or/and disturbances of the posture may be helpful.

We believe that further theoretical and experimental studies of postural
dynamics can provide better insight in the organization of human motor
control, and thus it could help in the development of methods of differential
diagnostics.
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